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This literature review presents a systematization of the concepts that underlie mathematics, showing the 
connections between the philosophy of science and logic. To conduct this literature review, databases such 
as Scopus, Web of Science and Google Scholar were consulted, aiming to obtain a broad and robust 
coverage of the fundamental concepts that relate mathematics to the philosophy of science and logic. It 
was argued that the teaching of Mathematics can advance in contributions to the philosophical basis so 
that the student realizes that this science is dynamic, and that its nature is composed of elements that allow 
for logical-philosophical debate, providing yet another alternative for the construction of knowledge. 
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R E S U M O  

 
O presente trabalho de revisão de literatura apresenta uma sistematização dos conceitos que fundamentam 
a matemática, mostrando as conexões entre a filosofia das ciências e a lógica. Para realizar esta revisão de 
literatura, foram consultadas bases de dados como Scopus, Web of Science e Google Scholar, visando obter 
uma cobertura ampla e robusta dos conceitos fundamentais que relacionam a matemática com a filosofia 
das ciências e a lógica. Argumentou-se que o ensino de Matemática pode avançar em contribuições na base 
filosófica para que o aluno perceba que essa ciência é dinâmica, e que sua natureza é composta de 
elementos que permitem o debate lógico-filosófico proporcionando mais uma alternativa para a construção 
do conhecimento. 
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Introduction  

 

What is Mathematics? What are the contributions of Zermelo, Fraenkel, Neumann, and 

Gödel to the formation of mathematical thought? We know that Mathematics is the result of 

the union of several components that are rarely presented in a connected way and in the same 

literary work. These components need to be extracted and modeled from the philosophy of 

science, the philosophy of mathematics, logic, and, of course, own mathematics. 

A large part of the history of Mathematics is made by anonymous people, contributions 

from philosophers and mathematicians from the past and present who face challenges in the 

obstinate search for demonstrations. 

Mathematics is like bricks in a large construction, but its foundation is based on some 

components structured throughout history (BALESTRI, 2020). The interdisciplinarity 

between mathematics and philosophy is the key to the process, but addressing connections 

between these worlds requires a vast historical detail of the different schools of thought such 

as logicism, intuitionism, formalism and presenting all elements necessary for a foundation of 

Mathematics. 

For Deleuze and Guattari (2010), all forms of knowledge are forms of thought, 

philosophy produces thought, but this is not the privilege of philosophy, Mathematics is 

knowledge that converges to the idea of a component placed by these philosophers, but not 

assimilated by them, because there is a distinction between forms of creation that characterize 

various types of knowledge. Following these steps, we present a systematization of concepts 

that describe and/or define the most common and widespread foundation of Mathematics in 

mathematics and logic books, organized philosophically. 

For this article, studies were selected that address the dynamic character of 

mathematics and its philosophical connections, providing an overview of how logic and 

philosophy contribute to the understanding of mathematical concepts. We argue that the 

teaching of Mathematics can benefit from a philosophical basis, helping students to perceive 

mathematics as a dynamic science, with elements that enable a logical-philosophical debate. 

This approach, therefore, offers a pedagogical alternative that contributes to the construction 

of knowledge in a broader and more interactive way. 

Mathematics, in its essence, is a science marked by abstraction, formalization and 

logical rigor, and its history is deeply intertwined with the development of philosophical 

thought. Since ancient times, questions about the nature of numbers, geometric figures and 

the very structure of mathematical reasoning have aroused the curiosity of philosophers and 

mathematicians, who sought to understand not only "How" to do mathematics, but "What" 

mathematics is and “What is its role in human knowledge?” Greek philosophers, such as Plato 

and Aristotle, took first steps in this direction, questioning whether mathematical objects 

existed independently of the physical world or whether they were creations of the human mind. 



COSTA, Carlos André Duarte; LOPES NETA, Natercia de Andrade  

 

1894 
 

 

 

During the Middle Age, mathematics remained largely associated with logic and 

natural philosophy, gaining status and relevance in European universities. In the Modern Age, 

with the emergence of figures such as Descartes, Newton and Leibniz, mathematics became an 

essential pillar for science, being fundamental for the development of the scientific method. In 

this period, philosophical questions about the foundation of mathematics began to deepen, 

involving the need to clearly define mathematical concepts and the relationship between 

mathematics and observable reality. The search for a consistent and complete mathematical 

system, capable of explaining universal truths, culminated in a series of debates and studies 

that shaped modern science. 

In the 19th century, mathematics underwent intense formalization, mainly in areas of 

logic and arithmetic, marking the beginning of the so-called "fundamental crisis". Theorists 

such as Frege, Russell and Hilbert dedicated themselves to systematizing mathematics, seeking 

to establish a solid and universal logical basis. This search culminated in the emergence of 

philosophical schools such as logicism, formalism and intuitionism, each offering different 

answers to the fundamental questions of mathematics. However, the work of Kurt Gödel, with 

his famous incompleteness theorems, shattered hopes for a fully closed and self-consistent 

mathematical system, revealing the limits of logical foundations and introducing new 

questions about the nature of truth and proof in mathematics. 

In the contemporary context, mathematics continues to be a field of intense 

philosophical discussions. The nature of mathematical concepts, the validity of non-strictly 

logical methods and the applicability of mathematics to other sciences are topics that remain 

under debate. At the same time, these discussions have important repercussions for the 

teaching of mathematics, suggesting that, more than a practice of formulas and algorithms, 

mathematics can be understood as a dynamic activity, which involves critical thinking, debate 

and constant reflection on its structure itself. 

Given this scenario, this work aims to present systematic definitions of foundations of 

Mathematics, showing connections between the philosophy of science and logic. From a 

literature review, it was demonstrated how these philosophical bases can enrich the teaching 

of mathematics, helping to demystify its image as a rigid and static science and encouraging a 

deeper and more dynamic understanding of its nature. 

 

Methodological Path 

 

To carry out this literature review, we adopted a systematic bibliographic review 

methodology. This approach involved the careful selection of studies and publications that 

address mathematics in its philosophical and logical bases, aiming to systematize fundamental 
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concepts of this science and its interrelations with the philosophy of science and logic. 

 

The Scopus, Web of Science and Google Scholar databases were searched, chosen for 

their scope and relevance in the area. On these bases, we used keywords such as “philosophy 

of mathematics”, “mathematical logic”, “epistemology” and “mathematics teaching” to identify 

publications aligned with research objectives. 

Study inclusion criteria focused on publications that explored conceptual elements of 

mathematics from a philosophical perspective, in addition to research that discusses the role 

of logic and epistemology in the construction of mathematical knowledge. We excluded studies 

that did not present consistent theoretical discussions or that were restricted to empirical 

analyzes without philosophical foundations. 

After selection, texts were analyzed to extract and organize keyconcepts that support 

mathematics as a dynamic science capable of logical-philosophical debates. We argue that this 

perspective can enrich the teaching of Mathematics, by allowing students to understand its 

constantly developing nature and its multiple philosophical connections, creating an 

environment more conducive to the construction of knowledge. 

 

Component 1: Language 

 

The journey begins with the definition of a language capable of “speaking” about 

mathematical objects with rigor and without ambiguities that a natural language has. For 

Deleuze and Guattari (1995, p.7-8), 

The elementary unit of language — the statement — is the command word. More 

than common sense, a faculty that would centralize information, it is necessary 

to define an abominable faculty that consists of issuing, receiving and 

transmitting command words. 

In this sense, with language being the first component of foundations in Mathematics, 

it implies that from there the direction will be given for the concreteness of objects that are 

purely abstract. Symbols that define mathematical language are just ideas that materialize in 

the world. 

Still according to Deleuze and Guattari (2010, p. 23), 

 

There is not simple concept. Every concept has components, and is defined by 
them. So there is a number. It is a multiplicity, although not all multiplicity is 
conceptual. There is no single-component concept: even the first concept, the 
one with which a philosophy "begins", has several components, since it is not 
evident that philosophy must have a beginning and that, if it determines one, it 
must add to it a point of view or a reason.   
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The discipline that deals with signs that constitute a language is called semiotics and 

semiosis is the use of these signs. Semiotics has three dimensions: “1. The signs themselves; 2. 

The objects designated by the signs; 3. The people who employ the signs.” (COSTA, 1992, p. 

69). Furthermore, with reference to signs and semiosis, signs, at least in complex cases, involve 

three types of relationships: they relate to objects, people and other signs (COSTA, 1992, p. 

70). 

Seeking to simplify concepts of semiotics, we can divide it into syntactics, semantics 

and pragmatics. Syntactics deals with the combination of language objects, that is, their 

morphology. Semantics concerns the meaning of these objects (interpretation of a word, a 

logical formula, etc.). And finally, pragmatics considers, in addition to the construction and 

meaning of symbols themselves, the people connected to semiosis. 

In the context of Semiotics we need to “extract” elements necessary to designate 

mathematical objects. First steps in building a formal language were taken by Plato, Aristotle, 

Leibniz and Kant (SILVA, 2007). Gottlob Frege is a central figure due to his logicist project: 

Fundamentals of Arithmetic, launched in 1884, where he attempted to formalize mathematics. 

Here we start talking about the language of set theory, which is first-order logic. It 

consists of an alphabet and formulas. The alphabet is made up of variables: lowercase letters 

x,y,z, ... which can be indexed by numbers; connectives: ⌐ (negation), → (conditional); 

quantifier: ∀ (universal quantifier); parentheses: these are the left and right parentheses and 

serve as punctuation; binary predicates: = (equality) and ∈ (belongs). Formulas are finite 

sequences of alphabet symbols and follow the following set of rules: 

 

1. If 𝑥𝑥 and 𝑦𝑦 are variables, 𝑥𝑥 ∈ 𝑦𝑦 and 𝑥𝑥 = 𝑦𝑦 are formulas;   

2.  If 𝐿𝐿 and 𝑀𝑀 are formulas, ¬(𝐿𝐿), (𝐿𝐿) → (𝑀𝑀) 
 

are formulas;  

3. If 𝐿𝐿 is formula and 𝑥𝑥 is a variable, so ∀𝑥𝑥(𝐿𝐿) is formula; 

4. All formulas can be constructed using items 1, 2 e 3. 

 

When we create formulas and they become extensive and/or complex, we need to add 

other symbols that can simplify these larger expressions. For example, we can simplify the 

formula ∀z((z∈x)→(z∈y)) as follows: x⊂y, which is saying that x is contained in y if every 

element of x belongs to y. Another way to simplify is by using constants, which correspond to 

proper names in natural language. 

Completing simplification mechanisms, since we are using first order logic, others basic 

connectives can be deduced as follows: 
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 ∨ (disjunction): (A) ∨ (𝐵𝐵) is an abbreviation of �¬(𝐴𝐴)� → (𝐵𝐵); 

 ∧ (conjunction): (𝐴𝐴) ∧ (𝐵𝐵) is an abbreviation of ¬((¬(𝐴𝐴)) ∨ (¬(𝐵𝐵));  

 ↔ (biconditional): (𝐴𝐴) ↔ (𝐵𝐵) is an abbreviation fof  �(𝐴𝐴) → (𝐵𝐵)� ∧ �(𝐵𝐵) → (𝐴𝐴)�; 

 ∃ (existential quantifier): ∃𝑥𝑥(𝐴𝐴) is an abbreviation of ¬(∀𝑥𝑥(¬(𝐴𝐴))). 

 

In 1929, Kurt Gödel demonstrated that first-order logic (the language of mathematics) 

is complete and consistent, that is, that all logically valid formulas can be derived within the 

system without the need to add new inference rules. The proof is known as Gödel's 

completeness theorem (ROQUE, 2012). 

We saw here that we need to be very clear about the ideas we use in Mathematics, that 

often the simplification of terms is an attempt to make this language more accessible without 

losing its essence. 

This language needs to be well defined so that there is no error in the idea of what we 

are talking about, for this reason standards and symbols were created for a so-called universal 

language.  

 

Component 2: Definitions 

 

For Scheinerman, “mathematical objects acquire existence through definitions. For 

example, a number is called prime or even as long as it satisfies precise conditions, without 

ambiguity” (SCHEINERMAN, 2011, p. 5). At this point, our search is for a component that has 

a legislative character, but which in the context of mathematics is obliged not to allow multiple 

interpretations of the same fact. If something is illegal in a given instance that concerns a 

subject or area of mathematics, then it will be illegal for all instances in any area of 

mathematics. Furthermore, the “critical” terms that constitute a given definition must first be 

defined. Other example: “An integer is called even if it is divisible by 2”. 

However, we understand, as in philosophy, that “there are not simple concepts. Every 

concept has components and is defined by them. So there is a number. It is a multiplicity, 

although not all multiplicity is conceptual” (DELEUZE; GUATTARI, 1992, p.23). In this 

definition of an even number, in addition to words from natural language, we have three terms 

that draw attention: integer, divisible and the number 2. When we talk about a foundation in 

Mathematics, what we mean is that it is necessary to have a base, a foundation from which 

everything else is built. In this sense, the number 2 is at the basis of the theory, since in the 

first stage it can be represented as a set, and sets, in turn, are primitive objects in ZFC 

(everything is a set) and are not defined. Their existence is guaranteed to the extent that they 

submit to the axioms of ZFC. Other than that, we are outside the rules of the “game” called 

Mathematics. So when it comes to definitions, according to Scheinerman (2011, p. 5),   
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this is a game we cannot entirely win. If every term is defined in simpler terms, 

we will continually be searching for definitions. There must come a time when 

we say, “This term is indefinable, but we believe we understand what it means”.  

Searching to characterize the concept of definition within the scope of formal sciences, 

according to Sant’Anna (2005, p. XV), 

two classes of definitions are distinguished: abbreviative and amplificative. The 

first simply constitute processes that help to expose theories, not expanding 

their languages. They come in two categories: simple ones, which replace 

complex groups of symbols with a new symbol, and contextual ones, which 

introduce new symbols, such as abbreviations, in certain contexts. In principle, 

these definitions can be eliminated, as they are nothing more than auxiliary 

techniques in the construction of theories. As Russell said, these are 

typographic conventions.       

To conclude studies on definition, we will quickly address fundamental concepts of 

three theories on the concept of definition contained in Wolenski and Kohler (1999). 

 

1. Lesniewski’s theory 

 

To Lesniewski, every definition is only created when a new symbol is introduced into 

the language of a given theory. Thus, if we have a formula F that introduces a new symbol S 

into this theory, then two criteria must be satisfied: 

 “Eliminability criterion: means that when writing a formula using a given de-

fined concept, it can be rewritten in an equivalent way without any explicit mention of that 

concept” (SANT’ANNA, 2005, p. 18); 

 “Non-creativity criterion: means it is impossible to obtain new results from the 

definition” (SANT’ANNA, 2005, p. 18). 

 

2. Tarski’s theory 

 

In Mathematics, the concept of structure is defined as an ordered pair (set), where we 

have for the first element, a set and for the second, a set of relations. A collection of structures 

is called a species and it satisfies certain conditions that are the axioms of the species. For 

example, if the language to be worked on is first order (ZFC language). In Sant’Anna words 

(2005, p. 30), 
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Let us call this language Λ. Let 𝑒𝑒 = ⟨𝐷𝐷,𝑅𝑅⟩ be an interpretation for Λ. A set X of e 

is said to be definable according to Tarski if, and only if, there is a well-formed 

formula 𝜑𝜑(𝑦𝑦) in Λ with only one free occurrence of a variable y, such that 𝑥𝑥 ∈ 𝑋𝑋 

if, and only if, x satisfies this formula. Therefore, we say that the formula φ(y) 

defines the set X.  

 

3. Padoa Principle 

 

Starting from the definitional concepts of Lesniewsli and Tarski, the Padoa principle 

according to Beth (1953, p. 330),  

 

Let S be an axiomatic theory whose primitive concepts (excluding logical 

constants) are 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛. Such concepts, as already mentioned, can be 

individual constants, relations, operations or sets. A given concept Such 

concepts, as already mentioned, can be individual constants, relations, 

operations or sets. A given concept 𝑐𝑐𝑖𝑖 is independent (non-definable) of the 

concepts 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑖𝑖−1, 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖+1, 𝑐𝑐𝑛𝑛 if, and only if, there are two models of S in 

which 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑖𝑖−1, 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖+1, 𝑐𝑐𝑛𝑛 have the same interpretation; but the 

interpretations of 𝑐𝑐𝑖𝑖 , in these models, are different. 

 

These three theories show us that a definition “there are, most of the time, pieces or 

components coming from other concepts, which responded to other problems and assumed 

other plans” (DELEUZE; GUATTARI, 1992, p.26); and, in these convergences, we have 

connections where we group the definitions into what we call sets. 

 

Component 3: Sets 

 

Let us start discussing the notion of set in an intuitive way, in the sense that it is a 

primitive concept within the theory. So the idea, in principle, is to treat sets as any collection 

of objects or elements that are distinct. This conception is known as naive set theory (ROQUE, 

2012) and was developed between 1874 and 1895 by the great mathematician Georg Ferdinand 

Ludwig Philipp Cantor. 

According to Sant’Anna (2007, p. 1), 

The intuitive idea that a set is a collection of objects was nothing new. The 

surprise introduced by Cantor was the idea that infinities can be treated as well-

defined, well-delineated objects, in some sense. In other words, Cantor was 
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particularly interested in infinite sets, which even led him to classify different 

types of infinities. 

For Cantor, the set is a non-enumerable compact grouping in which all points are 

accumulation and have an empty interior (BOYER; MERZBACH, 2012). Non-enumerable sets 

are those that do not have a bijection, that is, we cannot relate the elements of one set to 

another, for example, I have children in the park and not enough balls for them. But, Cantor 

worked with infinite sets. 

According to Cantor, there are infinities greater than other infinities, everything would 

be explained by bijective correspondence, a part is not smaller than a whole, but if a set is finite 

(defined cardinality) the part is always smaller than a whole (DELAHAYE, 2006).  

Cantor's definitions of infinity and the grouping into sets are similar to what Deleuze 

and Guattari (1995, p. 202) defended of infinity as the absolute horizon of the activity of 

thinking, as the unlimited and incommensurable, and also as the infinitely small within the 

that has limits, or as the infinitely variable from a finite set.  

We just ask for a little order to protect us from the chaos. There is nothing more 

painful, more distressing than a thought that escapes itself, than ideas that 

escape, that disappear poorly delineated, already gnawed into oblivion or 

precipitated into other ideas that we have not yet mastered. They are infinite 

variabilities whose disappearance and appearance coincide. They are infinite 

speeds that are confused with the immobility of the colorless and silent 

nothingness that they travel, without nature or thought. It is the moment in 

which we do not know whether it is too long or too short for time. We get 

eyelashes that crack like arteries. We incessantly lose our ideas. This is why we 

try so hard to maintain established opinions. We only ask that our ideas be 

concatenated according to a minimum of constant rules, and the association of 

ideas has never had any other meaning, to provide us with those rules of 

protection, similarity, contiguity, causality, which allow us to put a little order 

in our ideas. ideas, move from one to another according to an order of space and 

time. 

 

At the beginning of the 20th century, serious problems relating to foundations of 

Mathematics emerged via paradoxes in both logic and set theory. Bertrand Russell (2007) 

began studying, in 1902, Gottlob Frege's work, Grundgesetze der Arithmetik, and this moment 

in the history of mathematics is crucial and had its main developments until the 1930s, but it 

is certainly still a key point in any study that seeks to formalize and/or present a Mathematics 

Foundation (ROQUE, 2012). Russel found a contradiction in the system proposed in Frege's 

work, which became known as “Russel's Paradox”. Let's get to it: 
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Let z be the set of all sets that are not members of itself. In Cantor's theory, we have: 

R={x∣x∉x}. This set will lead to the following contradiction: R ∈R ↔ R∉R. Here, dear reader, 

we need a little logic to prove that we actually have a contradiction. Consider the following set: 

R={x∣x is regular}. Where regular = (x∉x). The following question then arises: Is R 

regular? We have two possible answers: 

1. If R∈R, then R∉R, as it does not have the property of being regular, which is not 

belonging to itself (x∉x) 

2. If R∉R, then R∈R, as it has the property of being regular, which is that it does 

not belong to itself (x∉x) 

 

In both cases we have a contradiction. In the demonstration above, a small detail was 

purposely omitted. Let's make a new demo that fixes this flaw. 

 

𝑅𝑅 = {𝑥𝑥 ∣ 𝑥𝑥 is a regular set}. Let us ask the same question as in the previous 

demonstration. 

 

1.1 If R∈R, then R is a set and is regular. By the connective “and” both statements 

must be true. This implies that item 1.1 leads to a contradiction, as we have R∉R, the same as 

occurred in item 1. 

 

1.2. If R∉R, then R is not set or is not regular. By the connective “or” one of the two 

statements must be false. By item 2, the second part of the statement (it is not regular) leads 

to R∈R and we also have a contradiction. 

 

Having defined the nature of the set by Cantor, it is important to talk about David 

Hilbert (HILBERT, 1899), he is the greatest exponent in the defense of the formalization of 

mathematics. His work, which dealt with the foundations of geometry Grundlagen der 

Geometrie, published in 1899, makes clear the rigor he sought for mathematics. In short, his 

goal was to obtain an axiomatic system that should satisfy three conditions: consistency, 

completeness and independence.  
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Component 4: Axioms 

 

Axiom is a dogma in Mathematics, a truth of faith. No demonstration needed. It is an 

extension of the previous item and comes to overcome paradoxes, especially Russel's, so we 

need to establish the conditions about the nature of a set and the ways in which we can 

construct them without paradoxes arising.   

Cantor's pioneering ideas allowed results that went against intuition and brought 

critical problems to the foundations of mathematics (DAUBEN, 1990). His set theory was 

defined by the following axioms: 

 

Axiom 1. Extensionality: A set is determined solely by its elements. So sets like 𝐴𝐴 =

{3,5,7, 9} and 𝐵𝐵 = {5,7,3, 9} are equal. 𝐴𝐴 = {1,2,3, 4} and 𝐵𝐵 = {1, 1, 1, 2, 2, 2, 3, 4} so are equal. 

The order and repetition of elements are irrelevant. 

Axiom 2. Comprehension: It guarantees that every logical formula φ(x) creates a new 

set. We denote the creation of a set C, as C={x∣φ(x)}"." 

  

Cantor's thought focused on what is real and what is illusion in Mathematics, in his set 

theory he rejected several axioms, because for him, as we see in Deleuze (1962, p. 118) “there 

is no truth that, before being true, is not the effectuation of a meaning or the realization of a 

value”. His theory interprets propositions about mathematical objects such as numbers and 

functions, and provides a standard set of axioms to prove or disprove the data. 

Zermelo-Fraenkel (ZF) set theory is a formal axiomatic theory. It is presented in a first-

order language (see component 1) and all objects in it are sets. Zermelo and Fraenkel seek to 

map ideas presented in Cantor's theory, eliminating inconsistencies. 

At this point, we need to clarify a question that is capable of showing more accurately 

the idea of a foundation of Mathematics. According to Sant’Anna (2007, p. 47), 

 

There are many formal set theories in the literature. Some are formulated in 

first-order languages, others in higher-order languages [...]. Still others are 

formulated in languages that do not use logical connectives, quantifiers or 

variables [...], while there are also those that are based on non-classical logic 

[...]. Ultimately, imagination is the limit. To illustrate the idea of the advantages 

of formalization, the most common formal set theory is discussed here, namely 

Zermelo-Fraenkel (ZF). In no precise sense is ZF better or worse than other 

known proposals. It is simply the most common because it is historically one of 

the first, allows a precise foundation of vast fields of mathematics, is very 
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intuitive compared to Cantor's original ideas and also because it is widely 

published in many important logic books. 

 

The axiomatic set theory ZF together with the axiom of choice (Choice) is known as ZFC 

and in addition to having Zermelo and Fraenkel as the great creators, it had a decisive 

participation in its evolution and maturation by Thoralf Skolem, Dmitry Mirimanoff and Jonh 

Von Neumann . Let's go to the ZFC axioms: 

1. Axiom of extensionality (ZFC1): every set is uniquely determined by its elements. 

 

This axiom establishes a relationship between equality and relevance and explicitly 

talks about the nature of sets, comparison with other sets and brings with it other concepts. If 

two objects are not equal, then the following remains: they are disjoint, one is a sub-set of the 

other or there is an intersection between them. These three elements are related to the sense 

of relevance. 

2. Foundation Axiom (ZFC2): “for every non-empty set A there is an element x disjoint from 

A” (SANTOS, 2007, p. 92). 

 

The foundation axiom also deals with the nature of sets and prohibits the existence of 

certain strange “sets”, an example of Cantor's theory and any set that meets this axiom is said 

to be well founded. Like this: 

 𝐸𝐸 = {𝐸𝐸}, 𝐵𝐵 = {{𝑏𝑏},𝐵𝐵},  are not sets in ZFC axiomatic theory; 

 Infinite chains like 𝑥𝑥 ∈ 𝑥𝑥 ∈ 𝑥𝑥 ∈ 𝑥𝑥⋯ are also prohibite by ZFC2.  

 

3. Substitution Axiom (ZFC3): “given a binary proposition π such that, 

∀x(π(x,y)=π(x,z)→y=z) that is, the proposition defines a function whose domain is the set A, 

then the image of the set A by the function defined by π is also a set called the image of A by 

the function π.” (SANTOS, 2007, p. 92). Thus we have a function π(x,y) that receives the ele-

ments of a set A (domain) and its image by the function defined by π is also a set. This axiom 

is actually a scheme of axioms, because for each function π we gain a new axiom.    

 

The substitution axiom, given its complexity and application only in advanced topics of 

the theory, can be presented in a simpler version called the Separation Axiom (in ZFC it is a 

theorem). “Such a very cunning scheme of postulates was the solution that Zermelo found to 

avoid certain paradoxes, such as Russel’s” (SANT’ANNA, 2007, p. 51). Zermelo's new version 

of Cantor's axiom 2 would look like this: R={x ∈A∣ φ(x)}. Here it is established that we can only 

build new sets from a pre-established set. Let's go back to Russell's paradox and see what hap-

pens: 𝑅𝑅 = {𝑥𝑥 ∈ 𝐴𝐴 ∣  𝑥𝑥 ∉ 𝑥𝑥}  
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 𝑅𝑅 ∈ 𝑅𝑅, so 𝑅𝑅 ∈ 𝐴𝐴 and 𝑅𝑅 ∉ 𝑅𝑅. The second condition leads to a contradiction and as we have a 

conjunction, the entire sentence is invalidated; 

 𝑅𝑅 ∉ 𝑅𝑅, so 𝑅𝑅 ∉ 𝐴𝐴 or 𝑅𝑅 ∈ 𝑅𝑅. The second condition leads to a contradiction, but we have a dis-

junction. Thus, the set R defined by the formula x∉x are all objects that are not in A. Using the 

axiom of separation it is possible to prove that the universe set is not a set in ZFC and also show 

the existence and uniqueness of the empty set (∅), which in many works is presented as an 

axiom (Axiom of Emptiness). Here it is a theorem in ZFC. 

 

4. Power Axiom (ZFC4):  guarantees the existence of all the parts of a given set. This new set 

is denoted by 𝑅𝑅 = 𝒫𝒫(𝐴𝐴). For example, if 𝐴𝐴 = {1,2,3}, so 𝒫𝒫(𝐴𝐴 = {∅,

{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}. This axiom begins to clarify the “nature” of Mathematics, 

showing that there are several levels of infinity. Another example: the set of natural numbers 

is enumerable and the set of real numbers is not enumerable, that is, it is not possible for there 

to be a bijection between these two sets. 

 

With ZFC3 and ZFC4 we can deduce that given any two sets we can form a new set that 

has these two sets as elements. For example, if a and b are sets, then {a, b} is also a set. In most 

books that deal with the topic, this construction of sets is presented as the Pair Axiom. Here it 

was introduced as a theorem in ZFC. 

 

5. Union Axiom (ZFC5): “For every set, its union (the collection of all its members) is a set.” 

(TSOUANAS, 2021, p. 521). To better understand this axiom, we will show two examples: 

 If 𝑅𝑅 = {1, {2,3},4, {5,6,7}}} so 𝐴𝐴 = ∪ (𝑅𝑅) = {2,3,5,6,7}  

 If 𝑅𝑅 = {1,3,5,7,9,11,13} so 𝐴𝐴 = ∅. 𝑅𝑅 does not have members of members as elements. With the 

ZFC axioms presented so far, we can define the intersection and union between sets. Further-

more, using the axioms of Union, Power and Separation it is possible to define the Cartesian 

product between any two sets of ZFC. 

 

6. Infinite Axiom (ZFC6): “There is a set that has ∅ as a member and is closed for the operation 

𝑥𝑥+” (TSOUANAS, 2021, p. 535). Here we need to clarify this “thing” denoted by x+. The suc-

cessor set of a set x is defined as: 𝑥𝑥+ = def 𝑥𝑥 ∪ {𝑥𝑥}. This definition is due to Von Neumann. 

 The axiom of infinity allows the construction of sets of the form: 

1.  ∅ 

2.  ∅ ∪ {∅} = {∅}  

3.  {∅} ∪  �{∅}� = {∅, {∅}}  
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 These sets are the bricks for building the Naturals, that is, the numbers  

as we know are a representation of sets within ZFC. Thus, we can simplify the above sets as 

follows: 

 

1.  0 = def ∅  

2.  1 = def 0+ = ∅+ = ∅ ∪ {∅} = {∅}   

3.  2 = def 0++ = ∅++ = {∅}  ∪ {{∅}} = {∅, {∅}}   

 

This implies that in ZF there is a set whose elements are 1, 2, 3, 4, 5, 6, ... This set is 

infinite according to Dedekind's definition: “Let there be a set A. we call Dedekind's A- infinite 

if and only if it can be 'injected' into a proper subset of it.”(TSOUANAS, 2021, p. 535).  

Furthermore, according to Coniglio (1997, p. 46), 

It is essential to realize that this axiom clearly separates Arithmetic (which can 

be performed without assuming the existence of infinite sequences) from other 

disciplines in advanced Mathematics, such as Analysis, which make essential 

use of the Axiom of Infinity. 

 

7. Choose Axiom (ZFC7): “given a set z whose elements are non-empty and two-by-two disjoint, 

then there exists a choice set u, which has exactly one member in common with each element 

of z” (CONIGLIO, 1997, p. 48) 

 

Trying to explain, according to Sant’Anna (2007, p. 57), 

Colloquially speaking, if x is a set whose elements are non-empty and disjoint 

sets when taken two by two, then there is a set y formed as follows: from each 

element of x “take” one and only one element arbitrary w to become an element 

of y. That is why we say that the intersection between y and each element z of x 

is a unitary set {w}. 

 

 Note that, although u “chooses” an element from each member of z, the axiom has nothing 

to do with the existence of an effective procedure for making this choice” (CONIGLIO, 1997, p. 

48). 

  ZFC3 presents a function (property) φ that extracts the members of a set that satisfies this 

property and constructs a new set. ZFC7 seems to complement this axiom, in the sense that the 

φ function needs to be described (expressed) and the choice function does not. 

 The principle of good order is equivalent to ZFC7: Every set admits a good order. 
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Searching to present an overview regarding the nature of these axioms, we can classify 

them as follows: 

 Axioms that say about the behavior and/or nature of a set: ZFC1 e ZFC2; 

 Axioms that allow building new sets: ZFC3, ZFC4, ZFC5 and ZFC7 (although it has a highly 

non-constructive character); 

 Axiom that guarantees the existence of certain sets: ZFC6 

 

The tension between Cantor's axiomatic set theory and other versions of set theory, 

such as that of Zermelo and Frankel, can be found, each with its virtues and defects, however 

it is undeniable that Cantor was essential for the foundations of Mathematics. All the 

persecution by his former advisor Leopold Kronecker meant that he was never recognized 

during his lifetime and died of starvation during the First World War (IEZZI, 2004). 

 

Component 5: Theorems 

 

In natural language we speak many types of phrases (sentences). Sometimes we give an 

order, other times we ask a question, and sometimes we make statements about a particular 

subject. The part we are interested in here are the declarative statements. “A theorem is a 

declarative statement about mathematics for which there is a proof” (SCHEINERMAN, 2011, 

p. 10). 

The way theorems are presented follows a logical structure and is the clearest 

materialization (insertion) of first-order logic within mathematics content, with the exception 

of its axioms which are presented in formal language. The vast majority of theorems have some 

of following forms: 

 If A (hypothesis), so B (conclusion). We have here the implication; 

 If A, so B and if B, so A. We have a double implication. 

 

Within a theory built on a formal system, we have: 

 Definition 1: “A theorem of a formal theory ℒ is the last formula B of a proof. Such a demon-

stration is called a demonstration or proof of B” (SANT’ANNA, 2005, p. 89).   

 Definition 2: “A formal theory ℒ is said to be decidable if there is an effective procedure for 

deciding whether a given well-formed formula of ℒ is a theorem of ℒ. If this effective procedure 

does not exist, then the theory is said to be undecidable”(SANT’ANNA, 2005, p. 89).  

    

 

 



DIVERSITAS JOURNAL. Santana do Ipanema/AL, Brazil, v.9 (4), 2024 

 

1907 
 

Component 6: Demonstration 

 

Searching to create a hierarchy, we first conceptualize the definitions and then make 

statements (theorems, postulates, etc.) about the objects “inside” mathematics. We need 

within this world to establish what is true and what is not. Truth in mathematics has 

particularities that distinguish it from other sciences. For example, in a legal system of justice, 

truth is established through a trial and its definition comes via a jury and/or judge. Still in this 

sense, we can have the truth (consensus) established through experiments. We can have the 

philosophical truth that is something unalterable under any circumstances, which states what 

it is: 

Dionysius affirms everything that appears, ‘even the harshest suffering’ and 

appears in everything that is affirmed. The multiple or pluralistic statement, 

this is the essence of the tragic. We will understand better if we think about the 

difficulties we encounter in making everything an object of affirmation 

(DELEUZE, 1962, p. 19).  

 

At the same time, philosophically, the statement alone is not enough, there is a need 

for a search for what is hidden behind appearances or so-called true statements, which leads 

to Deleuze's conclusion: “The complete formula of the statement is: the whole, yes , universal 

being, yes, but universal being is said to be a single becoming, the whole is said to be a single 

moment” (DELEUZE, 1962, p. 81-82). Therefore, philosophical truth does not have a single 

meaning, nor is it static and definitive, being influenced by several other factors. 

In mathematics we have demonstration (proof). To situate the issue, let's analyze 

Goldbach's conjecture: Every integer greater than 2 is the sum of two prime numbers. A project 

from the University of Aveiro, Goldbach conjecture verification (OLIVEIRA E SILVA; 

HERZOG; PARDI, 2018), has already confirmed the conjecture up to numbers of the order of 

4∙10^17, in other words we have an extremely successful experiment and everything indicates 

that the conjecture is in fact true. Returning to the statement above, we have the word “todo” 

and it brings us to the idea of ∀ (universal quantifier – “for everything”). Here lies the 

difference between what is acceptable as proof in mathematics compared to other sciences. 

   

Demonstration types: 

 

1. Direct Demonstration: “consists of, starting from the propositions 𝛼𝛼1, . . .,  𝛼𝛼1 in a model 𝔐𝔐, 

to use the rules of inference and the rules of equivalence until you arrive at the proposition β” 

(SANTOS, 2007, p. 74) 

2. Contrapositive Indirect Demonstration: “consists of starting from the premise ¬𝛽𝛽 in a 



COSTA, Carlos André Duarte; LOPES NETA, Natercia de Andrade  

 

1908 
 

model 𝔐𝔐 and using rules of inference and the rules of equivalence arrive at the argument 

¬𝛼𝛼1 …∨ ¬𝛼𝛼𝑛𝑛” (SANTOS, 2007, p. 75) 

3. Indirect Demonstration by Reduction to the Absurd: “in a model 𝔐𝔐 consists of demonstrat-

ing, using the rules of inference and the rules of equivalence, that 𝛼𝛼1 ∧ ⋯∧ 𝛼𝛼𝑛𝑛 ∧ ¬𝛽𝛽 is a contra-

diction” (SANTOS, 2007, p. 75). 

 

We can ask ourselves if there is a limit to what we can prove or is there knowledge that 

we are not allowed to have? To answer a mathematical question, there must be someone who 

has all the mathematical knowledge about that object. Mathematicians believe that at a given 

moment you have enough mathematics to solve all questions. This is what Hilbert advocated. 

 

Component 7: Incompleteness 

 

Between Hilbert's famous phrase, given in a lecture at the University of Munster in 

1926, where he stated that “No one can expel us from the Paradise that Cantor created” and 

Gödel's Incompleteness Theorems, only 4 years passed. Hilbert wanted to express the 

following with this phrase: that it was possible to axiomatize the entire structure of 

mathematical knowledge and prove, by strictly finite means, that this axiomatic is consistent 

(does not produce contradictions).   

Gödel studied logical systems in an abstract way, but they applied to what Hilbert 

wanted to do, and it was demonstrated that in a consistent logical system, there will be 

statements that can neither be proven nor disproved. For him, there are statements that are 

neither true nor false. 

Logician Jakob Hintikka called the moment when Gödel announced the 

Incompleteness Theorems “Gödel's Sternstunde” (his star hour), the lecture took place on 

October 7, 1930 at a congress in Königsberg. 

According to Goldstein (2008, p. 70), 

Gödel gave no sign of the revolution he was hiding under his sleeve until the last 

day of the congress, reserved for the general discussion of the articles from the 

previous two days. He waited until the general discussion was well advanced, 

and then mentioned, in a single perfect sentence, that true but non-deducible 

arithmetical propositions were possible, and he had proved that they existed. 

Let us look at Gödel's famous theorems, according to Carnielli, Rathjen (1990, p. 4),  

1st Incompleteness Theorems: In every consistent formal system S, with a 

minimum of arithmetic, it is possible to formalize a sentence U such that U can 

be intuitively interpreted as the statement that it itself is unprovable in S. 
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2nd Incompleteness Theorems: The proof of consistency for formal systems 

(under the conditions that Hilbert wanted) cannot be formalized within the 

system itself. 

  

We have a foundation in Mathematics, but there are statements that follow the rules of 

the game and where it cannot be proven that they are true or false. For example, Goldbach's 

conjecture, presented above, may be one such statement. Another famous problem that has so 

far escaped being proven or disproved is the Riemann hypothesis. 

 

To conclude 

 

After this review presenting a systematization with seven components that dealt with 

elements of philosophy, logic and mathematics, we can then make all necessary connections to 

glimpse the foundations of Mathematics and thus outline a reasonable answer that achieves 

the central purpose of this article.  

Presented in a first-order language and based on axiomatic set theory, Mathematics 

communicates the objects of its theory through its definitions and evolves and/or consolidates 

its fields of action as new theorems are demonstrated, although it is not capable of proving its 

own consistency and being “incomplete”, as it harbors in its “world” objects (statements) 

whose truth or falsity nothing can be said due to Gödel’s incompleteness theorems.   

To show how objects are constructed in mathematics using the concepts covered in this 

article, we will answer the following question: What is a function? We have been working with 

this definition since elementary school. Let's sketch a demonstration: 

 

1. Usando os axiomas de ZFC, podemos construir o conjunto {𝑥𝑥,𝑦𝑦}; 

2. Por ZFC1 sabemos que {𝑥𝑥,𝑦𝑦} = {𝑦𝑦, 𝑥𝑥}, então precisamos incrementar algo a mais; 

3. Definimos um par ordenado como (𝑥𝑥,𝑦𝑦) ≝ {{𝑥𝑥}, {𝑥𝑥,𝑦𝑦}}, que é conhecido como par de 

Kuratowki; 

4. Usando dois conjuntos A e B, onde podemos formar pares ordenados {𝑥𝑥,𝑦𝑦}, com 𝑥𝑥 

sendo elemento de A e 𝑦𝑦 elemento de B. O conjunto de todos os pares ordenados é 

chamado de produto cartesiano e definido como: 𝐴𝐴 × 𝐵𝐵 ≝ {(𝑥𝑥,𝑦𝑦) / 𝑥𝑥 ∈  𝐴𝐴 ∧ 𝑦𝑦 ∈ 𝐵𝐵}; 

5. Uma relação (R) é um conjunto de pares ordenados e é chamada de relação binária 

entre dois conjuntos A e B, se R é um subconjunto de 𝐴𝐴 × 𝐵𝐵 (ex.: as desigualdades <, > 

são relações); 

6. Uma função é uma relação com uma propriedade bem especial, a saber:  

Uma relação R entre dois conjuntos A e B, onde para todo (∀) 𝑥𝑥 ∈  𝐴𝐴 existe um único 𝑦𝑦 ∈ 𝐵𝐵 e  

(𝑥𝑥,𝑦𝑦) ∈ 𝑅𝑅   
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Here, once again, the meaning of a Mathematics Foundation becomes clear: A 

mathematical object such as a function represents a certain set within ZFC. See that we used 

several of keywords in this article and reduced the notion of function to the level of a set, where 

all mathematics is based.  

Hilbert said that “we hear within us the perpetual call: There lies the problem. Look for 

your solution. You can find it through pure reason, because in mathematics there is no 

ignorabimus” (HILBERT, 1899). I could end this story with this feeling of sadness or defeat, 

as Kurt Gödel proved that “ignorabimus” exist, but we can take the path that leads back to 

Gödel himself, as he had the nickname “Mister Why”, and the essence of Learning comes 

through questioning. However, it is worth remembering that squaring the circle took more 

than two thousand years to be resolved. 

Mathematics is a mystery, and these themes of inconsistency bring great philosophical 

concerns, for example, Galileo believed that nature was described in mathematical language. 

Does Mathematics itself impose obstacles to its own knowledge? Or have men not attained 

sufficient knowledge to demonstrate it completely? 
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