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ABSTRACT  ARTICLE  

INFORMATION 
Alcohol addiction is a critical global health concern, with traditional methods of predicting and classifying 
addiction levels often falling short in accuracy and applicability. This study aims to address these 
limitations by employing the Naïve Bayes Algorithm, a probabilistic machine learning model, and K-means 
Clustering to predict and classify alcohol addiction severity. Data was collected through a comprehensive 
survey of 500 participants, examining alcohol consumption frequency, underlying causes, and associated 
health impacts. The Naïve Bayes Algorithm achieved notable performance metrics, including an accuracy 
of 95%, precision of 93%, recall of 97%, and an F1 score of 95%. Simultaneously, K-means Clustering 
effectively categorized addiction into three distinct levels: less addicted, moderately addicted, and highly 
addicted. This classification provides healthcare professionals with actionable insights to tailor 
interventions and develop personalized treatment strategies. Compared to existing methods, the combined 
use of these algorithms demonstrates enhanced accuracy and reliability, offering a robust framework for 
addressing addiction severity. This research not only advances the use of machine learning in healthcare 
but also lays the groundwork for future studies integrating diverse algorithms and exploring broader 
dimensions of addiction. 
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RESUMO 
 

  
 

Palavras Chava: 
Aprendizado de máquina,  

Algoritmo Naïve Bayes, 
Agrupamento K-means,  

Alcoolismo, 
Dependência de álcool 

 

A dependência alcoólica é uma preocupação crítica de saúde global, com métodos tradicionais de previsão 
e classificação dos níveis de dependência frequentemente apresentando falhas em precisão e 
aplicabilidade. Este estudo busca abordar essas limitações empregando o Algoritmo Naïve Bayes, um 
modelo probabilístico de aprendizado de máquina, e o K-means Clustering para prever e classificar a 
gravidade da dependência alcoólica. Os dados foram coletados por meio de uma pesquisa abrangente com 
500 participantes, examinando a frequência de consumo de álcool, causas subjacentes e impactos 
associados na saúde. O Algoritmo Naïve Bayes alcançou métricas de desempenho notáveis, incluindo uma 
precisão de 95%, precisão (precision) de 93%, sensibilidade (recall) de 97% e uma pontuação F1 de 95%. 
Simultaneamente, o K-means Clustering categorizou eficazmente a dependência em três níveis distintos: 
menos dependente, moderadamente dependente e altamente dependente. Essa classificação oferece aos 
profissionais de saúde insights práticos para adaptar intervenções e desenvolver estratégias de tratamento 
personalizadas. Em comparação com os métodos existentes, o uso combinado desses algoritmos 
demonstra maior precisão e confiabilidade, oferecendo uma estrutura robusta para abordar a gravidade da 
dependência. Esta pesquisa não apenas avança o uso do aprendizado de máquina na saúde, mas também 
estabelece as bases para estudos futuros que integrem algoritmos diversos e explorem dimensões mais 
amplas da dependência. 
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Introduction 

Alcohol consumption is deeply embedded in numerous cultures worldwide. While it 

often plays a role in social and cultural events, its profound impact on public health cannot be 

overlooked. Immediate health risks linked with alcohol include accidents, injuries, and 

violence (Sudhinaraset et al., 2016). Chronic consumption has been associated with liver 

diseases such as cirrhosis, cardiovascular ailments, certain cancers, and mental health 

disorders (Centers for Disease Control and Prevention [CDC], 2022). Although moderate 

drinking has been linked to some protective effects on conditions like heart disease (Chiva-

Blanch & Badimon, 2019), the overarching consensus emphasizes that the risks far outweigh 

the benefits (CDC, 2022). 

Alcohol addiction, characterized by harmful patterns of alcohol use, remains a global 

public health challenge (Ali et al., 2011). Precision in understanding and classifying addiction 

levels is critical for designing effective interventions. Tailored strategies that hinge on accurate 

classification can significantly enhance recovery outcomes for individuals battling addiction 

(American Psychological Association, 2012). 

The growing application of machine learning in healthcare presents new opportunities 

to address these challenges (Habehh & Gohel, 2021). Among the various algorithms available, 

the Naïve Bayes algorithm, a probabilistic machine learning tool rooted in Bayes’ Theorem, 

was utilized in this study. The algorithm is widely recognized for its simplicity, speed, and 

accuracy in classification tasks, making it an ideal instrument for predicting and categorizing 

addiction levels based on individual health data. 

In this research, the Naïve Bayes algorithm serves as a computational tool to classify 

alcohol addiction into three levels: less addicted, moderately addicted, and highly addicted. By 

processing survey data from 500 individuals, the algorithm offers a structured approach to 

understanding addiction severity. When combined with K-means clustering, it enables 

healthcare professionals to derive actionable insights into patterns of addiction. These insights 

are invaluable for creating tailored treatment plans aimed at mitigating addiction's long-term 

health effects. 

This study highlights the algorithm’s role as more than just a predictive tool—it is a 

foundation for developing innovative public health strategies. By accurately assessing 

addiction severity, the Naïve Bayes algorithm can indirectly help healthcare providers address 

the health consequences of alcohol misuse. Through its transformative approach, this research 

bridges technology and healthcare, providing a scalable solution for understanding and 

combating alcohol addiction. 
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Research Objective 

The objective of this research is to leverage the Naïve Bayes Algorithm and K-means 

Clustering to develop a comprehensive model for predicting and classifying alcohol addiction 

levels. By analyzing data from 500 individuals, this study aims to offer refined categorizations 

of addiction severity, thereby providing a robust tool to support healthcare practitioners in 

devising personalized treatment strategies. 

Methodology 

 Data Collection a 

 The data for this research was collected through comprehensive questionnaires and 

online surveys administered via Google Forms. These instruments were specifically designed 

to assess the severity of alcohol consumption behaviors among participants. The 

questionnaires were divided into two primary sections: one focused on behavioral patterns and 

the other on symptoms associated with varying levels of alcohol intake. The target 

demographic included individuals who consumed alcoholic beverages, with stratified sampling 

employed to ensure a diverse and representative dataset (Kozak et al., 2008). The final dataset 

comprised responses from 500 participants, stored in a CSV file with 24 distinct features and 

an aggregate of 1,186 responses. 

 Data Preprocessing 

Before analysis, the dataset underwent a thorough preprocessing stage to ensure its 

quality and reliability. This included the elimination of redundant data, addressing missing 

values, rectifying inconsistencies, standardizing the datasets, curating outliers, and converting 

categorical data into numerical values through label encoding and data scaling (Jo, 2020). 

Additionally, Principal Component Analysis (PCA) was employed to reduce dimensionality and 

enhance computational efficiency, filtering out noise and retaining essential features. 

 Clustering with K-means Algorithms 

 The K-means clustering algorithm was employed to partition the dataset into distinct 

non-overlapping subgroups. The initial selection of cluster centroids can significantly 

influence the outcome, so the K-means++ initialization method was used to ensure better and 

faster convergence. The optimal number of clusters (k) was determined using the Elbow 

Method and the Silhouette Score, resulting in three distinct categories of users based on their 

alcohol addiction spectra. 

 Naïve Bayes Classification 

Following the clustering, the dataset was labeled, and a model was constructed using 

the Naïve Bayes algorithm. The data were split into training (80%) and testing (20%) sets. A 
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categorical Naïve Bayes model was developed and validated using various metrics, including 

accuracy, precision, recall, and F1-score. Cross-validation, divided into five folds, was applied 

to ensure the model wasn't overfitting. The Receiver Operating Characteristic (ROC) curve and 

Area Under the Curve (AUC) were used for comprehensive model evaluation. 

Dataset Collection 

Figure 1. 

Stratified Sampling 

 

Data was collected using online surveys and questionnaires. The target audience for the 

questionnaire included individuals who consumed alcoholic beverages in the past year and 

those who never drank, aiming to discern differences in behavior and symptoms. Stratified 

sampling was employed to ensure a comprehensive understanding of both subgroups. 

Stratified Sampling, a probability sampling technique, facilitates obtaining a 

representative sample from a population divided into roughly similar subpopulations or 

strata[35]. It ensures that specific subgroups are adequately represented in the sample and 

aids in the accurate estimation of each group's characteristics. This technique is pivotal in 

surveys aiming to understand disparities between subpopulations. 

The population was segmented into three primary groups: non-drinkers or minimal 

drinkers, occasional drinkers, and heavy drinkers. Survey and questionnaire items were 

meticulously designed to gauge behavioral patterns and symptoms associated with alcohol 

consumption. These items underwent expert validation to ensure the resulting data's 

credibility and validity. 

System Analysis Design 

The K-means clustering algorithm is a widely used technique in machine learning for 

partitioning a dataset into distinct, non-overlapping subgroups where each data point belongs 

to only one group. It aims to make the intra-cluster data points as similar as possible while also 

ensuring the clusters themselves are as distinct as possible. The algorithm achieves this by 

minimizing the within-cluster sum of squares. 

As shown in Figure 3, K-means Clustering groups the data by dividing it into sub-

groups that share similar attributes. K-means Clustering, a widely used unsupervised machine 

learning algorithm, is designed to partition datasets into distinct clusters based on data point 
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characteristics (Chaudhary, 2020). The primary objective of this algorithm is to identify and 

create well-defined clusters by minimizing intra-cluster variance while maximizing inter-

cluster differences. Each cluster has an associated centroid, which represents the mean 

position of all data points within that cluster and serves as a reference for assigning new data 

points (Jo, 2020). 

Figure 3. 

K-mean Clustering Algorithm 

 

Data Exploration was first performed to ensure clean data, followed by label encoding 

to convert categorical data into integers. Principal Component Analysis (PCA) was then applied 

to reduce data dimensionality and filter out noise. The Elbow, Silhouette methods, the 

Calinski-Harabsz Index, and the Davies-Bouldin Index were all used in tandem with K-means 

Clustering to ensure robust and accurate labeling of the dataset. Post clustering, the labeled 

data served as the foundation for modeling using the Naïve Bayes classifier. 

The goal was to discern how various features influence an individual's reliance on 

alcohol. While alcohol is often synonymous with celebration, its consumption is also linked to 

coping mechanisms during stressful or sad periods. The study aimed to ascertain the depth of 

an individual's reliance on alcohol, with K-means Clustering providing the labeling framework 

based on given features. 

The primary objective of this research was to classify alcohol addiction severity into 

distinct categories based on a multi-dimensional dataset. Given that K-means inherently 

creates distinct clusters, it aligns well with the research objective. Additionally, the clear 

demarcation between clusters aids in providing precise classifications, allowing for a better 

understanding of the gradations in alcohol addiction severity. The algorithm's efficiency in 

handling large datasets ensured that the entirety of the dataset was used, capturing all nuances 

and variations in the data, further aligning with the research's goal to provide a comprehensive 

classification. 

The choice of K-means clustering was not arbitrary but was based on careful 

consideration of the dataset's characteristics, the algorithm's strengths, and the research 

objectives. The results, as presented, underscore the efficacy of this choice. 
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Method for Selecting Initial Cluster Centroids: 

The initial selection of cluster centroids can significantly influence the outcome of the 

K-means clustering algorithm. A poor initial choice can lead to suboptimal cluster formations 

and may require more iterations for convergence, potentially leading to a local minimum 

solution. Recognizing this sensitivity, special attention was given to the method of initializing 

cluster centroids in this study. 

1. K-means++ Initialization: Instead of randomly initializing the centroids, which is 

the traditional method in vanilla K-means, the K-means++ initialization method was 

employed. K-means++ is a smart centroid initialization technique designed to speed 

up convergence. It works by selecting the first centroid randomly from the dataset and 

subsequently selecting the next centroids from the remaining data points with a 

probability proportional to their squared distance from the point's nearest existing 

centroid. This method ensures that the initial centroids are spread out across the data, 

leading to better and faster convergence. 

2. Multiple Initializations: Given the potential for K-means to converge to a local 

minimum, the algorithm was run multiple times with different centroid initializations. 

The final clustering solution chosen was the one with the lowest within-cluster sum of 

squares, ensuring an optimal clustering result. 

3. Elbow Method for Optimal 'K': Before initializing centroids, it's essential to 

determine the optimal number of clusters (K). The Elbow method was employed, which 

involves running the K-means clustering on the dataset for a range of values of K and 

then for each value of K compute the sum of squared distances from each point to its 

assigned center. When these overall dispersions are plotted against K values, the 

"elbow" of the curve represents an optimal value for K (a balance between precision 

and computational cost). 

Naïve Bayes Algorithm 

Naïve Bayes, an algorithm grounded in Bayes' Theorem, is known for its simplicity, 

speed, and efficacy in classification tasks (Bazett, 2022). Following the acquisition of a labeled 

dataset via K-means Clustering, modeling with the Naïve Bayes Algorithm was initiated. The 

data was split, with 80% dedicated to training and the remaining 20% reserved for testing 

(Azeraf et al., 2022). 

A categorical Naïve Bayes model was subsequently developed and tested, with 

validation measures such as accuracy, precision, recall, and F1-score implemented to assess 

model performance. To prevent overfitting, cross-validation divided into five folds was applied 

(Palupi, 2021). 
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Finally, the Receiver Operating Characteristic (ROC) curve and Area Under the Curve 

(AUC) were used for comprehensive model evaluation. These metrics serve as indicators of a 

model's ability to differentiate between positive and negative cases. Aiming for an AUC score 

above 0.8—indicative of robust model performance—the ROC curve also provided insights into 

the optimal classification threshold (Deng et al., 2010). The in-depth analysis via the ROC 

curve and AUC ensured that the resultant model was reliable and ready for deployment within 

a web application (Jo, 2020). 

Algorithm Design Methodology 

Figure 4. 

Algorithm Design Methodology 

 

 Figure 4 visually delineates the sequential process underpinning the Algorithm Design 

Methodology for this study. The methodology serves as a roadmap, guiding the data from its 

raw form to a stage primed for insightful analyses and predictions (Hartung, 2018). 

Data Preparation. This foundational step involves gathering and curating essential data for 

the study, with an emphasis on assembling relevant features to enhance the model's 

performance. Tasks such as data cleaning and organization are addressed during this stage 

(Palupi, 2021). 

1. Data Pre-processing. To ensure seamless data operations, various libraries, including 

Numpy, Pandas, Matplotlib, Pyplot, and Seaborn, are employed. This phase is critical for 

tasks such as converting non-numerical values into numerical equivalents (data encoding) 

and employing Principal Component Analysis (PCA) for dimensionality reduction (Jo, 

2020). 

2. Clustering. This phase focuses on the inherent attributes of the dataset, facilitating labeling 

based on similarities. It sets the stage for deploying the Naïve Bayes Classifier in 

subsequent steps (Chaudhary, 2020). 
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3. Data Splitting. As a precursor to modeling, the dataset is divided into two segments, with 

80% allocated for training to lay the groundwork for the model’s learning, and 20% 

reserved for testing to gauge the model's performance (Khalaf et al., 2017). 

4. Data Training: At this stage, the algorithm learns the dataset’s nuances by identifying 

patterns that are instrumental for future predictions (Bazett, 2022). 

5. Data Testing: Once trained, the model is tested against fresh data to evaluate its efficacy. 

The testing phase provides insights into the model's ability to generalize beyond the 

training data (An et al., 2023). 

6. Model Evaluation: Following testing, the model's performance and alignment with the data 

are assessed using metrics such as the Silhouette Score, Calinski-Harabasz Index, and 

Davies-Bouldin Index for clustering. The Naïve Bayes model is evaluated using Accuracy, 

Precision, Recall, F1-Score, Confusion Matrix, Cross-Validation, and the ROC & AUC 

curves (Deng et al., 2010; Azeraf et al., 2022). 

Formula 1. 

Silhoute Method Formula 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
 

Silhouette Method is a metric that shows the quality and similarity of clustering based 

on the similarity of points within the cluster [38]. 

The symbol a(i) is the average distance between i and all other points in the same 

cluster as i, while b(i) is the average distance between i and all other points in the nearest 

cluster to i, the cluster with the smallest average distance. max(a(i), b(i)) is the maximum value 

between a(i) and b(i). The symbol max(a(i), b(i)) is the numerator and provides a scale 

between 0 and 1. It is the maximum value between a(i) and b(i), which means that the 

silhouette score is bounded between -1 and 1. The nearer the score to 1 suggests that the 

Silhouette is well assigned to its designated clusters. If the score got near or equal to -1, this 

suggests that data points have been poorly assigned. Getting a score of near 0 suggests no clear 

distinction between the neighboring clusters. 

Formula 2. 

Calinsksi-Harabasz Formula 

𝐶𝐻 = (𝐵/𝑊) ∗ ((𝑁 − 𝐾))/((𝐾 − 1) ) 

The Calinski-Harabasz Index is another metric used to evaluate clustering quality by 

measuring the dispersion between clusters relative to the dispersion within clusters (Kim, 

2017). This metric provides insights into how well the clusters are separated from each other, 

with higher scores indicating better-defined and more distinct clusters. 
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In Calinksi-Harabasz index, B is the between-cluster sum of squares, which is the sum 

squared of distances of the centroids. W is the within-cluster sum of squares, the sum of 

squared distances of all points in the respective cluster. The factor ((n - k) / (k - 1)) is a 

correction term that increases as the number of clusters k increases. 

The Davies-Bouldin Index (DB) is a metric used to evaluate clustering quality by 

comparing the within-cluster scatter to the between-cluster separation of the data (Bijnen, 

1973). The formula is expressed as: 

Formula 3. 

Davies-Bouldin Formula 

𝐷𝐵 = (
1

𝑘
) ∗ 𝑠𝑢𝑚 (𝑚𝑎𝑥(𝑅(𝑖, 𝑗) + 𝑅(𝑗, 𝑖))) 𝑓𝑜𝑟 𝑖 ≠  

In Davies-Bouldin index, the symbol k represents the number of clusters, R(i,j) is the 

measure of the distance between clusters i and j, which is computed as the sum of the distances 

between each pair of points in clusters i and j divided by the number of pairs. The Davies-

Bouldin with the lowest score represents well-separated clusters with a smaller within-cluster 

scatter (Kim, 2017). 

Formula 4. 

Accuracy Formula 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

Accuracy, is a metric used to represent the correctly classified data instances over the 

total number of data instances (Ali et al., 2011). 

Formula 5. 

Precision Formula 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The Precision metric, which measures the correctly positive instances. This will 

measure how precise positive values are (Khalaf et al., 2017). 

Formula 6. 

Recall Formula 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Recall is a metric that measures the proportion of correctly predicted positive 

instances out of the total number of actual positive instances. It evaluates how well the model 

identifies all relevant cases within the datase (Ratini, 2022). 

Formula 7. 

F-1 Formula 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 The F1-score represents the harmonic mean of Precision and Recall, balancing these 

two metrics. It provides a single measure that captures the trade-off between precision and 

recall, making it particularly useful for imbalanced datasets  (Ratini, 2022). 

Discussion 

 The dataset for this research was meticulously sourced through questionnaires and 

online surveys administered via Google Forms. These surveys were tailored to assess the 

severity of alcohol consumption behaviors among respondents. Divided into two primary 

sections, the questionnaires delved into behavioral patterns and discernible symptoms related 

to alcohol consumption. The target demographic included individuals who consume alcoholic 

beverages. Stratified sampling was employed to ensure a diverse and representative data pool. 

The curated data was stored in a CSV file encompassing 24 distinct features with an aggregate 

of 1186 responses. This dataset, underpinned by strategic data collection and organization, 

offers a profound resource for delving deeper into the nuances of alcohol addiction severity 

among respondents. 

 Clustering Results 

 After preprocessing, the optimal cluster count of three was ascertained, aligning with 

the objective to delineate three distinct levels of addiction: less addicted, mildly addicted, and 

highly addicted. A silhouette score of 0.74 indicated the robustness of the clustering. The 

clustering outcome demonstrated that the dataset had been adeptly partitioned into three 

discernible categories, primed for decoding the gradations of alcohol addiction. 

 Naïve Bayes Model Evaluation 

 The Naïve Bayes Classifier showed impressive performance in its initial train-test split, 

achieving an accuracy of 96%, a precision of 94%, a recall of 97%, and an F1-score of 95%. The 

Confusion Matrix indicated high true positive and true negative counts, suggesting 

commendable accuracy, although some disparities emerged, particularly for the highly 

addictive cohort. The ROC curve and AUC scores further validated the model's efficacy, with 

AUC scores uniformly impressive at 0.97 for all labels. 
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 Clustering 

 To bolster the accuracy and efficiency of machine learning models and data analytics, 

the researchers undertook a comprehensive data preprocessing regimen. This involved the 

meticulous elimination of redundant data, addressing data voids, rectifying inconsistencies, 

standardizing datasets, curating outliers, and transmuting categorical data into numerical 

counterparts via label encoding and data scaling. 

Figure 5. 

Result of Elbow Method and Silhouette Score 

 

(a) Elbow Method 

 

(b) Sillhouette Score 

 After the preprocessing stage, the focus shifted to implementing the K-means 

Clustering. A pivotal precursor to this was discerning the optimal number of K Clusters. The 

Elbow Method paired with the Silhouette Score served as instrumental metrics in this quest. 

As evidenced in Figure 5 a and b, an optimal cluster count of three was ascertained, 

harmoniously aligning with the team's objective to delineate three distinct categories of users 

based on their alcohol addiction spectra. A silhouette score of 0.74 stands testament to the 

robustness of the clustering. 
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Figure 6. 

Scatter Plot of the K-means Clustering 

 

 

Delving deeper, Figure 6 illuminates the scatter plot resultant from the K-means 

Clustering, showcasing three optimally chosen clusters. Each of these clusters, demarcated in 

hues of green, blue, and red, pivot around stars signifying the centroids. These centroids 

epitomize the mean coordinates of the encompassed data points within their domain. The 

clustering outcome corroborates that the dataset has been adeptly partitioned into three 

discernible categories, primed for decoding the gradations of alcohol addiction. The intricacies 

of data preprocessing dovetailed with the precision of K-means clustering consummated the 

team's overarching ambition of judiciously gauging alcohol addiction levels. 

Model Evaluation for Clustering 

The researcher utilized various model evaluation metrics to validate the clustering 

outcomes. The Calinski-Harabasz score, which quantifies the balance between inter-cluster 

dispersion and intra-cluster cohesion, suggested well-defined and distinct clusters. As 

evidenced in Figure 7, the optimal cluster count (k=3) yielded a notable score of 6951.89, 

indicative of robust cluster distinction. Complementing this, the Davies-Bouldin Score, which 

gauges the average similarity of each cluster with its most resembling counterpart, returned a 

commendable score of 0.37 for k=3, affirming compactness within clusters and their clear 

separation. 
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Figure 7. 

Calinski-Harabsz and David-Bouldin Score 

 

(a) Calinski-Harabsz Score 

 

(b) David Bouldin Score 

To reinforce the validity of these findings, the team deployed Cross-Validation—a 

trusted mechanism for evaluating model performance by segmenting data into multiple 

subsets. Employing five such subsets aimed to obviate the pitfalls of overfitting and 

underfitting. The resultant mean score of 0.71 was congruent with the previously attained 

silhouette score of 0.74, corroborating that neither overfitting nor underfitting tainted the 

data. The results of these evaluations emboldened the team to proceed with the labeling and 

subsequent analytical steps, confident in the clustering's legitimacy. 

Naïve Bayes Model 

Result on the first train test split 

Table 1 underscores the efficacy of the Naive Bayes Classifier in its initial train-test split. 

An impressive array of scores across Accuracy, Precision, Recall, and F-1 metrics affirm its 

prowess in data classification. 
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Table 1. 

Naïve Bayes Classifier Performance Matrix 

Metrics Results 

Accuracy 96% 

Precision 94% 

Recall 97% 

F-1 Score 95% 

Figure 8. 

Confusion Matrix for each label after Cross-Validation 

 

(a) Label 0 

 

(b) Label 1 
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(c) Label 2 

 Presented in Figure 8, the Confusion Matrix elucidates the model's performance across 

various severity labels. The matrix predominantly showcases high true positive and true 

negative counts, suggesting commendable accuracy. However, disparities emerge, especially 

for label 2, hinting at potential areas for model refinement. 

 Label Analysis 

 Label 0 Analysis 

  True Negative (779): Correctly identified cases that don’t belong to label 0. 

False Positive (13): Misclassified cases predicted as label 0 but don’t belong to 

it. 

False Negative (19): Cases belonging to label 0 but predicted otherwise. 

True Positive (375): Accurately classified cases as label 0. 

 Label 1 Analysis 

  True Negative (768): Cases correctly identified as not pertaining to label 1. 

False Positive (13): Cases erroneously tagged as label 1. 

False Negative (24): Label 1 cases predicted as a different label. 

True Positive (381): Correctly identified cases under label 1. 

 Label 2 Analysis 

  True Negative (771): Accurately identified non-label 2 cases. 

False Positive (28): Cases incorrectly marked as label 2. 
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False Negative (11): Label 2 cases predicted differently. 

True Positive (376): Cases rightly classified as label 2. 

Figure 9. 

Model Performance using ROC and AUC 

 

Figure 9 maps the ROC curve, demarcating the discriminative capacity of the model 

across labels: 0, 1, and 2. Each curve crystallizes the efficacy of the respective label in 

differentiating between its positive and negative cases. The AUC, gauging the aggregate 

discrimination capability, stands uniformly impressive at 0.97 for all labels. This score 

underscores the model's adeptness at bifurcating cases based on their true classifications. The 

robust ROC and AUC metrics vouch for the model's precision in discerning alcohol addiction 

severities, ranging from minimal to pronounced addiction levels. 

Discussion 

The dataset for this research was meticulously sourced through questionnaires and 

online surveys administered via Google Forms. These surveys were tailored to assess the 

severity of alcohol consumption behaviors among respondents. Divided into two primary 

sections, the questionnaires delved into behavioral patterns and discernible symptoms related 

to alcohol consumption. The target demographic included individuals who consume alcoholic 

beverages. Stratified sampling was employed to ensure a diverse and representative data pool. 

The curated data was stored in a CSV file encompassing 24 distinct features with an aggregate 

of 1,186 responses. This dataset, underpinned by strategic data collection and organization, 

offers a profound resource for delving deeper into the nuances of alcohol addiction severity 

among respondents. 

The results of this study demonstrated the effectiveness of using Naïve Bayes and K-

means Clustering for classifying and predicting alcohol addiction severity. These findings align 

with prior research, such as Chaudhary (2020), which highlighted the utility of K-means 

Clustering in identifying distinct patterns within datasets. The high accuracy of 95%, as 

achieved by the Naïve Bayes model, corroborates the findings of Palupi (2021), who reported 
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similar success using machine learning algorithms for classification tasks in behavioral health 

data. 

Furthermore, the clustering approach used in this study resulted in three well-defined 

levels of alcohol addiction severity (less addicted, mildly addicted, and highly addicted). These 

results are consistent with Kim (2017), who emphasized the role of well-structured clustering 

techniques in segmenting populations for targeted interventions. However, the achieved 

silhouette score of 0.74 suggests room for improvement in optimizing cluster boundaries, as 

noted in Jo (2020), who proposed enhanced initialization techniques for improving clustering 

quality. 

When compared to other works, such as Habehh and Gohel (2021), who focused on 

broader healthcare applications of machine learning, this study provides a more specialized 

focus on alcohol addiction. The use of stratified sampling further strengthened the 

representativeness of the dataset, addressing the limitations reported in studies like An et al. 

(2023), which noted biases in data collection methods. 

By building on these comparative insights, this study reinforces the applicability of 

machine learning techniques in healthcare and offers a more targeted approach to 

understanding alcohol addiction. Future work could integrate other algorithms, as suggested 

by Bazett (2022), to enhance prediction accuracy and refine classification outputs. 

Conclusion 

 This study successfully utilized the Naïve Bayes Algorithm and K-means Clustering to 

predict and classify alcohol addiction levels into three categories: less addicted, mildly 

addicted, and highly addicted. The results demonstrated the effectiveness of these machine 

learning techniques, with the Naïve Bayes model achieving an accuracy of 95%, precision of 

93%, recall of 97%, and an F1-score of 95%. The K-means Clustering approach effectively 

segmented the dataset with a silhouette score of 0.74, underscoring its robustness. 

The findings provide healthcare professionals with a valuable tool for identifying and 

addressing alcohol addiction, contributing to more precise interventions and treatment 

strategies. Future studies should explore integrating additional machine learning algorithms 

and addressing limitations such as dataset size and cluster optimization to further enhance 

accuracy and applicability. 

 

Findings 

 This research utilized the Naïve Bayes Algorithm and K-means Clustering to analyze 

alcohol addiction levels, categorizing individuals into three groups: less addicted, moderately 

addicted, and highly addicted. Data was collected from 500 participants through a 

meticulously crafted survey, focusing on alcohol consumption frequency, underlying reasons 

for drinking, and associated adverse effects. 
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The Naïve Bayes model demonstrated high predictive accuracy, achieving 95% 

accuracy, 93% precision, 97% recall, and an F1-score of 95%. Cross-validation further validated 

the model’s reliability. K-means Clustering effectively segmented the dataset into three 

addiction levels, with the highly addicted cluster showing a pronounced frequency of alcohol 

consumption and adverse impacts. 

The study highlights the efficacy of combining machine learning techniques for 

predicting and categorizing addiction severity. These findings provide healthcare professionals 

with actionable insights to develop targeted interventions and personalized treatment 

strategies for individuals battling alcohol addiction. 
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