Teste e avaliação de torrefação de biomassa usando casca de Pili

Autores

  • Jeffrey Cacho Quezon City University
  • Sherwin Reyes Camarines Norte State College
  • Miguel Ramalho Santos Nueva Ecija University of Science and Technology
  • Joefil Jocson Nueva Ecija University of Science and Technology
  • Estrelita Bernardo Nueva Ecija University of Science and Technology

DOI:

https://doi.org/10.48017/dj.v8i4.2643

Palavras-chave:

Biomass roasting furnace, Pili shell, Roasting meat, Biomass fuel

Resumo

O uso de cascas de pili como combustível em um forno de torrefação de biomassa para assar carne foi investigado neste estudo. Para estimar a capacidade das cascas de pili em assar carne, os pesquisadores usaram observação, experimentação, análise de dados e interpretação. Verificou-se que as cascas de pili como combustível são um bom substituto para a torrefação. As cascas de pili são mais eficazes do que um forno elétrico, de acordo com os pesquisadores. Mais pesquisas sobre as qualidades e componentes das cascas de nozes de pili são necessárias para estabelecer o tratamento necessário antes que possam ser utilizadas como combustível. O aumento da pressão tem um efeito nas métricas de torrefação, como rendimentos de massa, taxa de densificação de energia, rendimento de energia, consumo de energia do processo, análise aproximada, alto valor de aquecimento.

Métricas

Carregando Métricas ...

Biografia do Autor

Jeffrey Cacho, Quezon City University

Vinculado à Faculty of Industrial Engineering Department, Quezon City University, 673 Quirino Highway Novaliches, Quezon City, Filipinas.

Sherwin Reyes, Camarines Norte State College

Instrutor 1, vinculado ao Department of Agricultural and Biosystems Engineering, Camarines Norte State College – Labo Campus.

Miguel Ramalho Santos, Nueva Ecija University of Science and Technology

Vinculado à Faculty of Math and Science, Graduate School, Nueva Ecija University of Science and Technology.

Joefil Jocson, Nueva Ecija University of Science and Technology

Vinculado à Faculty of Engineering Management, Graduate School, Nueva Ecija University of Science and Technology.

Estrelita Bernardo, Nueva Ecija University of Science and Technology

Program Chair, Engineering Management, Graduate School, Nueva Ecija University of Science and Technology.

Referências

Ahmad, R., Ilyas, H. N., Li, B., Sultan, M., Amjad, M., Aleem, M., Abbas, A., Imran, M. A., & Riaz, F. (2022, August 12). Current challenges and future prospect of biomass cooking and heating stoves in Asian countries. Frontiers. https://www.frontiersin.org/articles/10.3389/fenrg.2022.880064/full

Biomass fuels. (n.d.). https://enva.com/resource-recovery/energy/biomass-fuels

Boy et al. (2020). Fuel efficiency of an improved wood-burning stove in rural Guatemala: implications for health, environment and development. Energy Procedia

C. L'Orange et al. (2022). Influence of stove type and cooking pot temperature on particulate matter emissions from biomass cook stove

Enerpower. (2012, June 12). Biomass Explained. Enerpower. https://enerpower.ie/2012/06/12/biomass-explained/

Huboyo et al. (2021). Comparison between Jatrophacurcas seed stove and woodstove: performance and effect on indoor air quality

MacCarty et al. (2018). A laboratory comparison of the global warming impact of five major types of biomass cooking stoves

N. MacCarty et al. (2020). Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance

N. L. Panwar et al. (2018). Design and performance evaluation of a 5 kW producer gas stove. Biomass Bioenergy

Nonrenewableresources.(n.d.-b). https://education.nationalgeographic.org/resource/nonrenewable-resources/

Okino, J., Komakech, A. J., Wanyama, J., Ssegane, H., Olomo, E., & Omara, T. (2021, May 29). Performance characteristics of a cooking stove improved with sawdust as an insulation material. Journal of Renewable Energy. https://www.hindawi.com/journals/jre/2021/9969806/

Pham, L., & Dumandan, N. (2015). Philippine Pili: Composition of the lipid molecular species - researchgate. ResearchGate. https://www.researchgate.net/publication/285215963_Philippine_Pili_Composition_of_the_lipid_molecular_species

Still, K. (2022, May 7). Learning from the Three Stone Fire. Aprovecho. http://aprovecho.org/the-big-picture/learning-from-the-three-stone-fire/

Torretta, V., Mendoza, I. J. C., Portillo, M. a. G., & Conti, F. (2022). Are waste-based briquettes alternative fuels in developing countries? A critical review. Energy for Sustainable Development, 68, 220–241. https://doi.org/10.1016/j.esd.2022.03.013

V.M. Berrueta et al.(2018). Energy performance of wood-burning cook stoves in Michoacon, Mexico Renew.Energy

VNV. (2023, March 9). Cookstoves: An eco-friendly solution for sustainable cooking. VNV Advisory. https://vnvadvisory.com/cookstoves-an-eco-friendly-solution-for-sustainable-cooking/

Wikipedia contributors. (2023). Clay. Wikipedia.https://en.wikipedia.org/wiki/Clay Sriudom (2021). Thermal efficiency improvement and technology transfer of chimney stove for producing stove; Amphoe Bo Kluea, Nan Province

Yao, M. G. (2012). Pili (Canarium Ovatum Engl.) Nut Shell activated carbon: Surface modification, characterization and application for carbon dioxide capture. Animo

Zafar, S. (2021, December 14). Biomass Energy Potential in Philippines. BioEnergy Consult. https://www.bioenergyconsult.com/biomass-philippines/

Downloads

Publicado

2023-10-10

Como Citar

Cacho, J., Reyes, S., Santos, M. R., Jocson, J., & Bernardo, E. (2023). Teste e avaliação de torrefação de biomassa usando casca de Pili . Diversitas Journal, 8(4), 3194–3202. https://doi.org/10.48017/dj.v8i4.2643