eSwine Farming: Um sistema de monitoramento baseado em código QR para melhorar a eficiência e a lucratividade

Autores

  • Glenda Binay Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines
  • Chelsey Anongos Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines
  • Ma. Angela Manayon Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines.
  • Jake Robles Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines.

DOI:

https://doi.org/10.48017/dj.v9iSpecial1.2866

Palavras-chave:

eficiência, lucratividade, orientada por código QR,, suinocultura, sistema

Resumo

À medida que a tecnologia avança, muitas atividades tradicionais correm o risco de serem perdidas, incluindo a prática da suinocultura. A suinocultura é uma prática antiga que remonta a 4.900 a.C., mas a sua eficácia pode diminuir à medida que os indivíduos dependem cada vez mais de soluções tecnológicas mais recentes. No entanto, com o advento dos códigos QR, a suinocultura assumiu uma nova dimensão, permitindo aos agricultores recolher dados em tempo real sobre o crescimento, saúde e produção dos suínos. Este estudo foi concebido especificamente para melhorar a eficiência e a rentabilidade da suinocultura, capacitando os agricultores com informações precisas e oportunas sobre o estado dos seus suínos. O sistema permite que os agricultores recolham dados de forma rápida e fácil sobre suínos individuais, que podem então ser analisados para identificar quaisquer problemas. Esta informação pode ser usada para ajudar os agricultores a tomar decisões informadas sobre como gerir as suas operações de criação de suínos, expandir para práticas novas e mais eficazes e aumentar a rentabilidade. O sistema eSwine é uma inovação significativa na tecnologia da suinocultura, fornecendo uma ferramenta funcional, utilizável e confiável para os agricultores gerirem as suas operações de forma mais eficaz. Com uma média ponderada de 3,65, o eSwine é um ativo essencial para qualquer agricultor que procura maximizar os seus lucros enquanto mantém a saúde e o bem-estar dos seus suínos.

Métricas

Carregando Métricas ...

Biografia do Autor

Glenda Binay, Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines

 0009-0002-2144-4666; Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines. melquimigsangel123@gmail.com

Chelsey Anongos, Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines

0009-0000-5130-5865; Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines. 

Ma. Angela Manayon, Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines.

0009-0008-9624-2667; Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines.

Jake Robles, Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines.

0009-0003-4817-742X; Mindoro State University Bongabong Campus. Labasan, Bongabong, Oriental Mindoro, Philippines

 

Referências

Moeller, S., & Crespo, F. L. (2009). Overview of world swine and pork production. Agricultural sciences, 1, 195-208. https://books.google.com.ph/books?hl=en&lr=&id=TxGuCwAAQBAJ&oi=fnd&pg=PA 95&dq=Overview+of+World+Swine+and+Pork+Production+Steven+J.+Moeller,+ Fracisco+Le%C3%B3n+Crespo+&ots=zsk4wsVcIt&sig=T611wPdpPjc82wefaF4N0Y 4A&redir_esc=y#v=onepage&q=Overview%20of%20World%20Swine%20and%20 Pork%20Production%20%20Steven%20J.%20Moeller%2C%20Francisco%20Le%C3 %B3n%20Crespo&f=false.

Philippine Star. (2016). Philippine beefs up competitiveness of swine industry https://www.philstar.com/business/agriculture/2016/03/12/1562207/philippine- beefs-competitiveness-swine-industry#:~:text=The%20Philippine%20swine%20industry%20is,kept%20by%20s mallhold%20pig%20raisers.

Acosta, A. (2022, March 29) Pronutrients, Swine Philippine Swine Update. https://www.veterinariadigital.com/en/articulos/philippine-swine-update/

Catelo, M.A., (2017) Sustainable Productivity Growth in Philippine Swine Production As an Journal of Agricultural Extension, Economics & Sociology Retrieved from https://zenodo.org

Dipay, J. M. B., Fabregas, A. C., & Ado, R. G. (2018). Animal Identification and Records Monitoring Tool using RFID (AIRMTR). KnE Social Sciences, 721-730. https://doi.org/10.18502/kss.v3i6.2415.

Frost, A. R., Schofield, C. P., Beaulah, S. A., Mottram, T. T., Lines, J. A., & Wathes, C. M. (2016). A review of livestock monitoring and the need for integrated systems. Computers and electronics in agriculture, 17(2), 139-159. https://www.sciencedirect.com/science/article/abs/pii/S0168169996013014.

Dogan, H., et.al, (2016) Use of Radio Frequency Identification Systems on Animal Monitoring. Suleyman Dimirel University. Isparta, Turkey Retrieved from: https://www.researchgate.net/publication/308167938_Use_of_Radio_Frequency _Identification_Systems_on_Animal_Monitoring Retrieved date: March 26, 2021

Tiwari, S. (2016, December). An introduction to QR code technology. In 2016 international conference on information technology (ICIT) (pp. 39-44). IEEE. https://ieeexplore.ieee.org/abstract/document/7966807.

Focardi, R., Luccio, F. L., & Wahsheh, H. A. (2019). Usable security for QR code. Journal of Information Security and Applications, 48, 102369. https://www.sciencedirect.com/science/article/abs/pii/S2214212619301693,

Khandal, D., & Somwanshi, D. (2017, August). A novel cost-effective access control and auto filling form system using QR code. In 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1-5). IEEE. https://ieeexplore.ieee.org/abstract/document/7275575

Tarjan, L., Šenk, I., Tegeltija, S., Stankovski, S., & Ostojic, G. (2016). A readability analysis for QR code application in a traceability system. Computers and Electronics in Agriculture, 109, 1–11. doi:10.1016/j.compag.2014.08.015 https://www.sciencedirect.com/science/article/abs/pii/S0168169914002142

Yang, Feng & Wang, Kaiyi & Han, Hanyun & Qiao, Zhong. (2018). A Cloud-Based Digital Farm Management System for Vegetable Production Process Management and Quality Traceability. Sustainability. 10. 4007. 10.3390/su10114007. https://www.researchgate.net/publication/328682719_A_CloudCloudBased _Digital_Farm_Management_System_for_Vegetable_Production_Process_ Management_and_Quality_Traceability/citation/download

Neethirajan, S. (2020). Digitalization of Animal Farming. https://www.preprints.org/manuscript/202007.0040/v1

Lyons, C.; Bruce, J.; Fowler, V.; English, P. A comparison of Productivity and Welfare of Growing Pigs in Four Intensive Systems. Livest. Prod. Sci. 1995, 43, 265–274

Sahin, C.; Bolat, E.D. Development of Remote Control and Monitoring of Web-based Distributed OPC system. Comput. Stand. Interfaces 2009, 31, 984–993.

Li, L.H.; Huang, R.L.; Huo, L.M.; Li, J.X.; Chen, H. Design and Experiment on Monitoring Device for Layers Individual Production Performance Parameters. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–164.

Mungroo, N.; Neethirajan, S. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review. Biosensors 2014, 4, 472–493.

Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273.

Pan, L.; Xu, M.; Xi, L.; Hao, Y. Research of Livestock Farming IoT System Based on RESTful Web Services. In Proceedings of the 5th International Conference on Computer Science Network Technology, Changchun, China, 10–11 December 2016; pp. 113–116.

Ahmed, S.T.; Mun, H.S.; Islam, M.M.; Yoe, H.; Yang, C.J. Monitoring Activity for Recognition of Illness in Experimentally Infected Weaned Piglets Using Received Signal Strength Indication ZigBee-based Wireless Acceleration Sensor. Asian-Austral. J. Anim. Sci. 2016, 29, 149–156.

Vranken, E.; Berckmans, D. Precision Livestock Farming for Pigs. Anim. Front. 2017, 7, 32–37.

Neethirajan, S. Recent Advances in Wearable Sensors for Animal Health Management. Sens. Bio-Sensing Resh. 2017, 12, 15–29.

Racewicz, P.; Sobek, J.; Majewski, M.; Rozanska-Zawieja, J. The Use of Thermal Imaging Measurements in Dairy Cow Herds. Anim. Sci. Genet. 2018, 14, 55–69.

Benjamin, M.; Yik, S. Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals 2019, 9, 133.

Choi, H.; Mayakrishnan, V.; Kim, T.; Lim, D.; Park, S. Livestock Production in Korea: Recent Trend and Future Prospects of ICT Technology. FFTC Agric. Policy Platf. 2019. Available online: https://ap.fftc.org.tw/article/1616 (accessed on 10 January 2021)

Trendov, N.M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas; FAO: Rome, Italy, 2019; p. 26.

Van der Burg, S.; Bogaardt, M.J.; Wolfert, S. Ethics of Smart Farming: Current Questions and Directions for Responsible Innovation Towards the Future. NJAS Wagening J. Life Sci. 2019, 90, 100289.

Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3–4, 100009.

FAO. The State of Food and Agriculture: Livestock in Balance; FAO: Rome, Italy, 2009; Volume 180, pp. 492–496.

Lekagul, A.; Tangcharoensathien, V.; Liverani, M.; Mills, A.; Rushton, J.; Yeung, S. Understanding antibiotic use for pig farming in Thailand: A qualitative study. Antimicrob. Resist. Infect. Control 2021, 10, 3.

Pandey, S.; Kalwa, U.; Kong, T.; Guo, B.; Gauger, P.; Peters, D.; Yoon, K. Behavioral Monitoring Tool for Pig Farmers: Ear Tag Sensors, Machine Intelligence, and Technology Adoption Roadmap. Animals 2021, 11, 2665.

Bailey, D.; Trotter, M.; Tobin, C.; Thomas, M. Opportunities to Apply Precision Livestock Management on Rangelands. Agric. Spat. Anal. Model. 2021, 5, 1–13.

Hashem, N.M.; Hassanein, E.M.; Hocquette, J.-F.; Gonzalez-Bulnes, A.; Ahmed, F.A.; Attia.

Y.A.; Asiry, K.A. Agro-Livestock Farming System Sustainability during the COVID-19 Era: A Cross-Sectional Study on the Role of Information and Communication Technologies. Sustainability 2021, 13, 6521.

Schillings, J.; Bennett, R.; Rose, D.C. Exploring the Potential of Precision Livestock Farming Technologies to Help Address Farm Animal Welfare. Front. Anim. Sci. 2021, 2, 639678.

Micle, D.; Deiac, F.; Olar, A.; Drența, R.F.; Florean, C.; Coman, I.G.; Arion, F.H. Research on Innovative Business Plan. Smart Cattle Farming Using Artificial Intelligent Robotic Process Automation. Agriculture 2021, 11, 430.

Long, S.; He, T.; Kim, S.W.; Shang, Q.; Kiros, T.; Mahfuz, S.U.; Wang, C.; Piao, X. Live Yeast or Live Yeast Combined with Zinc Oxide Enhanced Growth Performance, Antioxidative Capacity, Immunoglobulins and Gut Health in Nursery Pigs. Animals 2021, 11, 1626.

Downloads

Publicado

2024-03-21

Como Citar

Binay, G., Anongos, C., Manayon, M. A., & Robles, J. (2024). eSwine Farming: Um sistema de monitoramento baseado em código QR para melhorar a eficiência e a lucratividade. Diversitas Journal, 9(1_Special). https://doi.org/10.48017/dj.v9iSpecial1.2866