Sistema de Avaliação de Riscos de Desastres Utilizando Algoritmo de Máquina de Vetores de Suporte e Indicadores de Risco
English
DOI:
https://doi.org/10.48017/dj.v10i4.3509Palavras-chave:
Avaliação do risco de desastres, Algoritmo SVM, Indicadores de risco, Métodos mistos; Sistema de apoio à decisão, Sorsogon, FilipinasResumo
Este estudo desenvolveu um sistema de avaliação de riscos de desastres que integra o algoritmo de Máquina de Vetores de Suporte (SVM) e indicadores de risco derivados de dados de redes sociais e fontes oficiais. Utilizando o Processo Unificado Racional (RUP) para o desenvolvimento do sistema e um desenho de métodos mistos para a avaliação, o estudo foi conduzido na província de Sorsogon, Filipinas, propensa a desastres. O sistema utilizou um classificador SVM com núcleo linear para categorizar postagens em redes sociais como relacionadas ou não a desastres e calculou um Índice de Risco de Desastre (DRI) com base em cinco indicadores-chave: ameaça, exposição, vulnerabilidade e capacidade (contramedidas duras e brandas). As funcionalidades do sistema incluíram módulos de extração de dados, visualização baseada em SIG (Sistema de Informação Geográfica) e uma camada de segurança com criptografia SHA-256. Testes de usabilidade utilizando o questionário USE e entrevistas qualitativas revelaram altos níveis de utilidade percebida, facilidade de uso e satisfação entre os profissionais de gestão de desastres. Os resultados identificaram Juban, Sta. Magdalena e Bulan como os municípios com os maiores níveis de risco de desastre. O estudo conclui que o sistema proposto é uma ferramenta eficaz para aprimorar a preparação para desastres e recomenda sua futura implementação com integração de dados em tempo real e cobertura geográfica ampliada.
Métricas
Referências
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539-42559. https://doi.org/10.1007/s11356-022-19718-6.
Achirul Nanda, M., Boro Seminar, K., Nandika, D., & Maddu, A. (2018). A comparison study of kernel functions in the support vector machine and its application for termite detection. Information, 9(1), 5. https://doi.org/10.3390/info9010005.
Algredo-Badillo, I., Morales-Sandoval, M., Medina-Santiago, A., Hernández-Gracidas, C. A., Lobato-Baez, M., & Morales-Rosales, L. A. (2022). A SHA-256 hybrid-redundancy hardware architecture for detecting and correcting errors. Sensors, 22(13), 5028. https://doi.org/10.3390%2Fs22135028.
Al-Kofahi, M. K., Hassan, H., Mohamad, R., Intan, T. P., & Com, M. (2020). Information systems success model: A review of literature. International Journal of Innovation, Creativity and Change, 12(8). https://www.ijicc.net/images/vol12/iss8/12839_Kofahi_2020_E_R.pdf
Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Machine learning from theory to algorithms: an overview. In Journal of physics: conference series (Vol. 1142, p. 012012). IOP Publishing. https://doi.org/10.1088/1742-6596/1142/1/012012
Asghar, M., Bajwa, I. S., Ramzan, S., Afreen, H., & Abdullah, S. (2022). A Genetic Algorithm‐Based Support Vector Machine Approach for Intelligent Usability Assessment of m‐Learning Applications. Mobile Information Systems, 2022(1), 1609757. https://doi.org/10.1155/2022/1609757
Astaburuaga, J., Martin, M. E., Leszczynski, A., & Gaillard, J. C. (2022). Maps, volunteered geographic information (VGI) and the spatio-discursive construction of nature. Digital Geography and Society, 3, 100029. https://doi.org/10.1016/j.diggeo.2022.100029
Bak, K. (2022, December 5). Exploring the Benefits of EBP, RUP and UML. Medium. https://53jk1.medium.com/exploring-the-benefits-of-ebp-rup-and-uml-df957786f0d2.
Banks, F. (2017, March 17). What is Rational Unified Process And How Do You Use It?. Airbrake. https://blog.airbrake.io/blog/sdlc/rational-unified-process.
Barba, O. M., Calbay, F. A. T., Francisco, A. J. S., Santos, A. L. D., & Ponay, C. S. (2021). Clustering Filipino Disaster-Related Tweets Using Incremental and Density-Based Spatiotemporal Algorithm with Support Vector Machines for Needs Assessment. arXiv preprint arXiv:2108.06853. https://www.researchgate.net/publication/324692056
Bozan, K., Stoner, C., & Maden, B. (2023). User Experience Design in the Information Systems Curriculum: Lessons Learned and Best Practices. Information Systems Education Journal, 21(1), 11-31. https://files.eric.ed.gov/fulltext/EJ1385267.pdf
Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., ... & Walker, K. (2020). Purposive sampling: complex or simple? Research case examples. Journal of research in Nursing, 25(8), 652-661. https://doi.org/10.1177%2F1744987120927206
Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 408, 189-215. https://doi.org/10.1016/j.neucom.2019.10.118
Chartoff, S. E., Kropp A.M., Roman, P. (2023, August 28). Disaster Planning. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK470570/
Coombs, H. (2022). Case study research: Single or multiple [White Paper]. Southern Utah University. http://dx.doi.org/10.5281/zenodo.7604301
Cvetković, V., & Filipović, M. (2017). Information systems and disaster risk management. In International scientific and professional conference–40 years of higher education in the field of security–Theory and Practice, Skopje, Republic of Macedonia. https://www.researchgate.net/publication/318419566_Information_systems_and_disaster_risk_management
Cuizon, J. C. (2019). Assessing Applicant Employability Using Social Media for Talent Acquisition and Recruitment in IT/BPM Companies. Recoletos Multidisciplinary Research Journal, 7(1), 37-45. https://doi.org/10.32871/rmrj1907.01.04
Fabbrocino, F., Vaiano, G., Formisano, A., & D'Amato, M. (2019). Large-scale seismic vulnerability and risk of masonry churches in seismic-prone areas: two territorial case studies. Frontiers in built environment, 5, 102. https://doi.org/10.3389/fbuil.2019.00102
Flores, G., Figueroa, A., Tumamak, R., & Berdon, N. J. M. (2021). A Sound-based Machine Learning to Predict Traffic Vehicle Density. Recoletos Multidisciplinary Research Journal, 9(1), 55-62. https://doi.org/10.32871/rmrj2109.01.05
Gumasing, M. J. J., & Sobrevilla, M. D. M. (2023). Determining Factors Affecting the Protective Behavior of Filipinos in Urban Areas for Natural Calamities Using an Integration of Protection Motivation Theory, Theory of Planned Behavior, and Ergonomic Appraisal: A Sustainable Disaster Preparedness Approach. Sustainability, 15(8), 6427. https://doi.org/10.3390/su15086427
Hassan, S. U., Ahamed, J., & Ahmad, K. (2022). Analytics of machine learning-based algorithms for text classification. Sustainable Operations and Computers, 3, 238–248. https://doi.org/10.1016/j.susoc.2022.03.001
Interaction Design Foundation - IxDF. (2023, July 31). Design Iteration Brings Powerful Results. So, Do It Again Designer!. Interaction Design Foundation - IxDF. https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer.
Kadhim, A. I. (2019). Survey on supervised machine learning techniques for automatic text classification. Artificial intelligence review, 52(1), 273-292.https://doi.org/10.1007/s10462-018-09677-1
Kim, Y. K., Sohn, H. G., Kim, Y. K., & Sohn, H. G. (2018). Disaster theory. Disaster risk management in the Republic of Korea, 23-76. https://doi.org/10.1007%2F978-981-10-4789-3_2
Lagria, R. F., Jalao, E. R., & Resurreccion, J. (2022). A Text Mining Framework for the Classification and Prioritization of Disaster-Related Tweets for Disaster Response. Philippine Engineering Journal, 43(1). https://www.journals.upd.edu.ph/index.php/pej/article/download/9176/8101/
Lasala Jr, N., Prado, J., Doringo, N., & Ricafort, J. (2025a). BEsMART: Board Examinations Mobile Application Reviewer for Pre-Service Science Teachers using Space Repetition and Hypercorrection. Pakistan Journal of Life and Social Sciences, 23 (1), 7274-7290. https://doi.org/10.57239/PJLSS-2025-23.1.00564
Lasala, N. J., Ricafort, J., & Prado, J. (2025b). Effect of E-learning Self-directed Interactive Module (E-SelfIMo) on Students’ Understanding of Earth Science Concepts: English. Diversitas Journal, 10(2). https://doi.org/10.48017/dj.v10i2.3444
Loberes, J. M., Jalmasco, A. C., & Lasala, N. J. (2025). Interactive story for teaching ecosystem topics using Twine application for elementary school students: English. J. Basic Educ. Res, 6(2), 66-78.https://doi.org/10.37251/jber.v6i2.1480
Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine learning in disaster management: recent developments in methods and applications. Machine Learning and Knowledge Extraction, 4(2). https://doi.org/10.3390/make4020020
Martínez-Rojas, M., del Carmen Pardo-Ferreira, M., & Rubio-Romero, J. C. (2018). Twitter as a tool for the management and analysis of emergency situations: A systematic literature review. International Journal of Information Management, 43, 196-208. https://doi.org/10.1016/j.ijinfomgt.2018.07.008
McGowran, P., & Donovan, A. (2021). Assemblage theory and disaster risk management. Progress in Human Geography, 45(6), 1601-1624. https://doi.org/10.1177/03091325211003328
Mirandilla, M. E. L. (2020). The Practicality and Applicability of Using Indigenous Knowledge for Disaster Risk Reduction and Climate Change Adaptation in Four Municipalities in the Province of Sorsogon, Philippines. Bicol University R & D Journal, 23(2). https://journal.bicol-u.edu.ph/assets/journal_pdf/Mirandilla_64-77.pdf
Mohanty, M. D., Das, A., Mohanty, M. N., Altameem, A., Nayak, S. R., Saudagar, A. K. J., & Poonia, R. C. (2022, July). Design of Smart and Secured Healthcare Service Using Deep Learning with Modified SHA-256 Algorithm. In Healthcare (Vol. 10, No. 7, p. 1275). MDPI. https://doi.org/10.3390%2Fhealthcare10071275.
Murzintcev, N., & Cheng, C. (2017). Disaster hashtags in social media. ISPRS International Journal of Geo-Information, 6(7), 204. https://doi.org/10.3390/ijgi6070204.
Nabi, J. (2018, August 15). Machine Learning —Fundamentals. Medium. https://towardsdatascience.com/machine-learning-basics-part-1-a36d38c7916
OCHA (2021). 2021 Philippines Disaster Management Reference Handbook. https://reliefweb.int/report/philippines/2021-philippines-disaster-management-reference-handbook
OCHA (Philippines: Region V (Bicol) profile (1 Dec 2015) - Philippines. (2015, December 11). ReliefWeb. https://reliefweb.int/report/philippines/philippines-region-v-bicol-profile-1-dec-2015
Opach, T., Navarra, C., Rød, J. K., Neset, T. S., Wilk, J., Cruz, S. S., & Joling, A. (2023). Identifying relevant volunteered geographic information about adverse weather events in Trondheim using the CitizenSensing participatory system. Environment and Planning B: Urban Analytics and City Science, 50(7), 1806-1821. https://doi.org/10.1177/23998083221136557
PAGASA (n.d.). About Tropical Cyclones. https://www.pagasa.dost.gov.ph/information/about-tropical-cyclone
Palen, L., Hughes, A.L. (2018). Social Media in Disaster Communication. In: Rodríguez, H., Donner, W., Trainor, J. (eds) Handbook of Disaster Research. Handbooks of Sociology and Social Research. Springer, Cham. https://doi.org/10.1007/978-3-319-63254-4_24
Paton, D. (2019). Disaster risk reduction: Psychological perspectives on preparedness. Australian journal of psychology, 71(4), 327-341. https://doi.org/10.1111/ajpy.12237
Petralba, J. (2020). Wordnet Semantic Relations in a Chatbot. Recoletos Multidisciplinary Research Journal, 8(2), 15-34. https://doi.org/10.32871/rmrj2008.02.02
PHIVOLCS (n.d.). PHIVOLCS Latest Earthquake Information. https://earthquake.phivolcs.dost.gov.ph/
Reuter, C., & Kaufhold, M. A. (2018). Fifteen years of social media in emergencies: a retrospective review and future directions for crisis informatics. Journal of contingencies and crisis management, 26(1), 41-57. https://doi.org/10.1111/1468-5973.12196
Reuter, C., Hughes, A. L., & Kaufhold, M. A. (2018). Social media in crisis management: An evaluation and analysis of crisis informatics research. International Journal of Human–Computer Interaction, 34(4), 280-294. https://doi.org/10.1080/10447318.2018.1427832
Ridder, H. G. (2017). The theory contribution of case study research designs. Business research, 10, 281-305. https://doi.org/10.1007/s40685-017-0045-z.
Sadeghi-Niaraki, A., Jelokhani-Niaraki, M., & Choi, S. M. (2020). A volunteered geographic information-based environmental decision support system for waste management and decision making. Sustainability, 12(15), 6012. https://doi.org/10.3390/su12156012
Sakurai, M., & Murayama, Y. (2019). Information technologies and disaster management–Benefits and issues. Progress in Disaster Science, 2, 100012. https://doi.org/10.1016/j.pdisas.2019.100012.
Santos, G. D. C. (2021). 2020 tropical cyclones in the Philippines: A review. Tropical Cyclone Research and Review, 10(3), 191-199. https://doi.org/10.1016/j.tcrr.2021.09.003
Seneviratne, K., Nadeeshani, M., Senaratne, S., & Perera, S. (2024). Use of Social Media in Disaster Management: Challenges and Strategies. Sustainability, 16(11), 4824. https://doi.org/10.3390/su16114824
Shittu, E., Parker, G., & Mock, N. (2018). Improving communication resilience for effective disaster relief operations. Environment Systems and Decisions, 38, 379-397. https://doi.org/10.1007/s10669-018-9694-5
Su, L., Bai, W., Zhu, Z., & He, X. (2021, September). Research on Application of Support Vector Machine in Intrusion Detection. In Journal of Physics: Conference Series (Vol. 2037, No. 1, p. 012074). IOP Publishing. https://doi.org/10.1088/1742-6596/2037/1/012074.
Takemoto, S., Shibuya, N., Kuek S.C., Keeley, A.R., Yarina, L. (2019). Information and Communication Technology for Disaster Risk Management in Japan : How Digital Solutions are Leveraged to Increase Resilience through Improving Early Warnings and Disaster Information Sharing : Information and Communication Technology for Disaster Risk Management in Japan (English). Washington, D.C. : World Bank Group. http://documents.worldbank.org/curated/en/979711574052821536/Information-and-Communication-Technology-for-Disaster-Risk-Management-in-Japan
Tan, M. L., Prasanna, R., Stock, K., Doyle, E. E., Leonard, G., & Johnston, D. (2020). Modified usability framework for disaster apps: a qualitative thematic analysis of user reviews. International Journal of Disaster Risk Science, 11, 615-629. https://doi.org/10.1007/s13753-020-00282-x.
Tocchi, G., Misra, S., Padgett, J. E., Polese, M., & Di Ludovico, M. (2023). The use of machine-learning methods for post-earthquake building usability assessment: A predictive model for seismic-risk impact analyses. International journal of disaster risk reduction, 97, 104033. https://doi.org/10.1016/j.ijdrr.2023.104033
Tolentino, L. K. S., Baron, R. E., Blacer, C. A. C., Aliswag, J. M. D., De Guzman, D. C. E., Fronda, J. B. A., ... & Fernandez, E. (2022). Real time flood detection, alarm and monitoring system using image processing and multiple linear regression. Journal of Computational Innovations and Engineering Applications, 7(1). https://www.dlsu.edu.ph/wp-content/uploads/pdf/research/journals/jciea/vol-7-1/2tolentino.pdf
Wang, Q. (2022, June). Support vector machine algorithm in machine learning. In 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 750-756). IEEE. https://doi.org/10.1109/ICAICA54878.2022.9844516
World Bank Group. (2023). Towards a comprehensive disaster risk management system for the Philippines. In World Bank. https://www.worldbank.org/en/country/philippines/brief/towards-a-comprehensive-disaster-risk-management-system-for-the-philippines
Wynn, D. C., & Eckert, C. M. (2017). Perspectives on iteration in design and development. Research in Engineering Design, 28, 153-184. http://dx.doi.org/10.1007/s00163-016- 0226-3
Wynn, D. C., & Maier, A. M. (2022). Feedback systems in the design and development process. Research in Engineering Design, 33(3), 273-306. https://doi.org/10.1007/s00163-022-00386-z
Yoo, E., Rabinovich, E., & Gu, B. (2020). The growth of follower networks on social media platforms for humanitarian operations. Production and Operations Management, 29(12), 2696-2715. https://doi.org/10.1111/poms.13245
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Jonel Prado, Nestor Jr Lasala, Noemi Dioneda

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
O periodico Diversitas Journal expressa que os artigos são de unica responsabilidade dos Autores, conhecedores da legislação Brasileira e internacional. Os artigos são revisados pelos pares e devem ter o cuidado de avisar da possível incidencia de plagiarismo. Contudo o plagio é uma ação incontestavel dos autores. A Diversitas Journal não publicará artigos com indicios de Plagiarismos. Artigos com plagios serão tratados em conformidade com os procedimentos de plagiarismo COPE.
A violação dos direitos autorais constitui crime, previsto no artigo 184, do Código Penal Brasileiro:
“Art. 184 Violar direitos de autor e os que lhe são conexos: Pena – detenção, de 3 (três) meses a 1 (um) ano, ou multa. § 1o Se a violação consistir em reprodução total ou parcial, com intuito de lucro direto ou indireto, por qualquer meio ou processo, de obra intelectual, interpretação, execução ou fonograma, sem autorização expressa do autor, do artista intérprete ou executante, do produtor, conforme o caso, ou de quem os represente: Pena – reclusão, de 2 (dois) a 4 (quatro) anos, e multa.”











