Mitigación de Gases de Efecto Invernadero en Caprinos y Ovinos: Tecnologías y Estrategias Productivas
DOI:
https://doi.org/10.48017/dj.v10i4.3619Palabras clave:
Aditivos nutricionales, Calorimetria respirometrica, Eficiencia alimentaria, Fermentación ruminal, Mejoramiento genéticoResumen
El crecimiento de la demanda global de proteína animal ha intensificado la preocupación por las emisiones de gases de efecto invernadero (GEI) provenientes de la producción ganadera. Los ovinos y caprinos, aunque con menor impacto absoluto que los bovinos, requieren estrategias específicas de mitigación y medición de sus emisiones. Esta revisión tiene como objetivo discutir críticamente los principales métodos utilizados para la cuantificación de GEI en pequeños rumiantes, destacando sus ventajas y limitaciones, así como las estrategias nutricionales, genéticas y de manejo más prometedoras para la reducción de emisiones. Se analizaron enfoques como la calorimetría respiratoria, el uso de SF6, técnicas in vitro y herramientas automatizadas, así como el uso de aditivos, la manipulación dietética, el mejoramiento genético y los sistemas de producción integrados. La revisión enfatiza la necesidad de soluciones integradas y adaptadas a la realidad de los sistemas productivos, buscando conciliar productividad y sostenibilidad ambiental. Al reunir y sistematizar
Métricas
Citas
Abdelkarim, M. M., Abdel-Rahman, G., Bassiony, S., Shehata, S., & Al-Sagheer, A. (2025). Influence of different probiotic combinations supplementation in a highly concentrated diet on in vitro gas production, methane emission, and nutrient degradability in sheep. Egyptian Journal of Veterinary Sciences. Advance online publication. https://doi.org/10.21608/EJVS.2025.337805.2506
Ahmed, M. G., Elwakeel, E. A., El-Zarkouny, S. Z., & Ahmed, F. A. (2024). Environmental impact of phytobiotic additives on greenhouse gas emission reduction, rumen fermentation manipulation, and performance in ruminants: An updated review. Environmental Science and Pollution Research, 31, 33664–33675. https://doi.org/10.1007/s11356-024-33664-5
Anjos, E. dos. (2019). Aditivos na terminação intensiva de bovinos de corte a pasto. (Dissertação de Mestrado em Zootecnia). Universidade Federal de Mato Grosso, Sinop. Recuperado de https://cms.ufmt.br/files/galleries/64/DISSERTA%C3%87%C3%95ES/2019/ELISMAR%20DOS%20ANJOS.pdf
Arndt, C., Hristov, A. N., Price, W. J., Yu, Z., & collaborators. (2022). Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proceedings of the National Academy of Sciences, 119(20), e2111294119. https://doi.org/10.1073/pnas.2111294119
Battelli, M. (2024). Plant secondary metabolites as a strategy to reduce methane emissions and improve feed efficiency in ruminants [Tese de doutorado, Università degli Studi di Milano]. Repositório Institucional.
Beauchemin, K. A., Crosson, P., & van Lingen, H. J. (2020). Cinquenta anos de pesquisa em metanogênese ruminal: lições aprendidas e desafios futuros para mitigação. Animal, 14(Suppl. 1), s2-s16. https://doi.org/10.1017/S1751731119003100
Beauchemin, K. A., Dorea, J. R. R., & McGinn, S. M. (2022). Invited review: Current enteric methane mitigation options. Journal of Dairy Science, 105(12), 9297-9326. https://doi.org/10.3168/jds.2022-22091
Berndt, A., Romero Solórzano, L. A., & Sakamoto, L. S. (2013). Pecuária de corte frente à emissão de gases de efeito estufa e estratégias diretas e indiretas para mitigar a emissão de metano. In Anais do 6º Simpósio de Nutrição de Ruminantes: Nutrição de precisão para sistemas intensivos de produção de carne: alto desempenho e baixo impacto ambiental (pp. 3-15). UNESP.
Bizzuti, B. E., Pérez-Márquez, S., Scarpino van Cleef, F. de O., Ovani, V. S., Costa, W. S., Lima, P. M. T., Louvandini, H., & Abdalla, A. L. (2023). In vitro degradability and methane production from by-products fed to ruminants. Agronomy, 13(4), 1043. https://doi.org/10.3390/agronomy13041043
Brito, L. F., Bedere, N., Douhard, F., Oliveira, H. R., Arnal, M., Peñagaricano, F., Schinckel, A. P., Baes, C. F., & Miglior, F. (2021). Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal, 15(Supplement 1), 100292. https://doi.org/10.1016/j.animal.2021.100292
Charlier, J., Rinaldi, L., Morgan, E. R., Claerebout, E., Bartley, D. J., Sotiraki, S., Mickiewicz, M., Martinez-Valladares, M., Meunier, N., & Wang, T. (2024). Sustainable worm control in ruminants in Europe: Current perspectives. Animal Frontiers, 14(5), 13–23. https://doi.org/10.1093/af/vfae033
Conington, J., Lambe, N., & Tortereau, F. (2024). International approach to reduce greenhouse gas emissions from sheep. ICAR Technical Series, 28, 85–92.
Della Rosa, M. M., Waghorn, G. C., Vibart, R. E., & Jonker, A. (2023). An assessment of global ruminant methane-emission measurements shows bias relative to contributions of farmed species, populations and among continents. Animal Production Science. Advance online publication. https://doi.org/10.1071/AN22051
Difford, G. F., Plichta, D. R., Løvendahl, P., Lassen, J., Noel, S. J., Højberg, O., Wright, A.-D. G., Zhu, Z., Kristensen, L., Nielsen, H. B., Guldbrandtsen, B., & Sahana, G. (2018). Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genetics, 14(10), e1007580. https://doi.org/10.1371/journal.pgen.1007580
Eisler, M. C., Lee, M. R. F., Bradley, A., Newton, S., & Harwatt, H. (2014). Agriculture: Steps to sustainable livestock. Nature, 507(7490), 32-34.
Escribano, M., Horrillo, A., Rodríguez-Ledesma, A., & Gaspar, P. (2024). Stakeholders' perception on the role of extensive livestock farming in the fight against climate change. Renewable Agriculture and Food Systems. Cambridge University Press. https://doi.org/10.1017/S1742170523000444
FAO (Food and Agriculture Organization of the United Nations). (2024). Pathways towards Lower Emissions: A global assessment of the greenhouse gas emissions and mitigation options from livestock sector development. FAO.
FAO (Food and Agriculture Organization of the United Nations). (2024). FAOSTAT Database: Livestock Primary. https://www.fao.org/faostat/en/#data/QCL
FAO (Food and Agriculture Organization of the United Nations). (2016). Livestock & climate change. FAO. https://www.fao.org/3/i6345e/i6345e.pdf
FAO. (2016). Livestock & climate change. FAO. Recuperado de https://www.fao.org/3/i6345e/i6345e.pdf
Ferraz, P. F. P., Ferraz, G. A. S., Ferreira, J. C., Aguiar, J. V., Santana, L. S., & Norton, T. (2024). Assessment of ammonia emissions and greenhouse gases in dairy cattle facilities: A bibliometric analysis. Animals, 14(12), 1721. https://doi.org/10.3390/ani14121721
Gerber, P. J., Henderson, B., & Makkar, H. P. S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, 7(Suppl. 2), 2020-234. https://doi.org/10.1017/S1751731113000876
Getachew, G., Blümmel, M., Makkar, H. P. S., & Becker, K. (1998). In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Animal Feed Science and Technology, 72(3–4), 261–281. https://doi.org/10.1016/S0377-8401(97)00189-2
Gómez-Oquendo, J., Torres, M., & Parra, J. E. (2024). Advanced sensor technologies for real-time greenhouse gas monitoring in livestock systems. Sensors and Actuators B: Chemical, 398, 134567. https://doi.org/10.1016/j.snb.2024.134567
Grainger, C., & Beauchemin, K. A. (2011). Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology, 166-167, 308-320.
Grossi, G., Messina, G., Rocci, L., & Ferrise, I. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69-76. https://doi.org/10.1093/af/vfy034
Hammond, K. J., Crompton, L. A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D. R., O’Kiely, P., ... & Reynolds, C. K. (2016). Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology, 219, 13–30. https://doi.org/10.1016/j.anifeedsci.2016.05.018
Hegarty, R. S., Goopy, J. P., Woodgate, R., & Tavendale, A. (2007). Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science, 85, 1479-1486.
Henderson, B., Gerber, P. J., & Makkar, H. P. S. (2017). Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitigation and Adaptation Strategies for Global Change, 22, 199-224. https://doi.org/10.1007/s11027-015-9673-9
Henrique, F. L., Bonfim, M. A. D., & Tonucci, R. G. (2023). Estimativa da emissão de gases de efeito estufa provenientes de rebanhos de caprinos e ovinos: no bioma Caatinga, Semiárido brasileiro, em cenários de atuação do FIDA. UFV, IPPDS.
Hickey, J. M., Chiurugwi, T., Mackay, I., Powell, W., & CGIAR Breeding Programs Workshop Participants. (2017). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 49, 1297–1303. https://doi.org/10.1038/ng.3920
Hogan, C., Lawton, T., & Beecher, M. (2024). The factors contributing to better workplaces for farmers on pasture-based dairy farms. Journal of Dairy Science, 107(10), 8044–8057. https://doi.org/10.3168/jds.2023-24416
Hristov, A. N., Oh, J., & Lee, C. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science, 91(11), 5095–5113.
Jayanegara, A., Wina, E., & Takahashi, J. (2014). Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: Influence of addition levels and plant sources. Asian-Australasian Journal of Animal Sciences, 27(10), 1426–1435. https://doi.org/10.5713/ajas.2014.14086
Jones, L. A., Becker, G. M., Parker, A. M., Williams, C. L., Thompson, L. R., White, R. R., ... & Swecker, W. S. (2024). Greenhouse gas emissions from a diversity of sheep production systems in the United States. Agricultural Systems, 213, 103807. https://doi.org/10.1016/j.agsy.2023.103807
Jonker, A., Hickey, S. M., Rowe, S. J., Janssen, P. H., Shackell, G. H., Elmes, S., Bain, W. E., Wing, J., Greer, G. J., Bryson, B., & others. (2018). Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers. Journal of Animal Science, 96(8), 3031–3042. https://doi.org/10.1093/jas/sky187
Ku-Vera, J. C., Rincón-Ramírez, J. A., & Aguilar-Pérez, C. F. (2020). Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 7, 584.
Lassen, J., & Difford, G. F. (2020). Review: Genetic and genomic selection as a methane mitigation strategy in dairy cattle. Animal, 14(Supplement 3), s473–s483. https://doi.org/10.1017/S1751731120001561
Lima, N. L. L. (2016). Eficiência produtiva em cordeiros classificados pelo Consumo Alimentar Residual (CAR) e Consumo e Ganho Residual (CGR). (Tese de Doutorado em Zootecnia). Universidade Federal de Minas Gerais, Belo Horizonte.
Liu, Y., Zhou, M., Diao, Q., Ma, T., & Tu, Y. (2025). Seaweed as a feed additive to mitigate enteric methane emissions in ruminants: Opportunities and challenges. Journal of Integrative Agriculture, 24(4), 1327–1341. https://doi.org/10.1016/j.jia.2024.09.036
Maraveas, C., Simeonaki, E., Loukatos, D., Arvanitis, K. G., & Bartzanas, T. (2023). Livestock Agriculture greenhouse gases for electricity production: Recent developments and future perspectives. Energies, 16(9), 3867. https://doi.org/10.3390/en16093867
Martin, R., Pook, T., Bennewitz, J., & Schmid, M. (2025). Genomic selection strategies for the German Merino sheep breeding programme – A simulation study. Journal of Animal Breeding and Genetics, 142(3), 251–262. https://doi.org/10.1111/jbg.12897
Mauricio, R. M., Mould, F. L., Dhanoa, M. S., Owen, E., Channa, K. S., & Theodorou, M. K. (1999). A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology, 79(4), 321–330. https://doi.org/10.1016/S0377-8401(99)00033-4
McGinn, S. M., Flesch, T. K., Harper, L. A., & Beauchemin, K. A. (2006). An approach for measuring methane emissions from whole farms. Journal of Environmental Quality, 35(1), 14–20. https://doi.org/10.2134/jeq2005.0250
Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55.
Meo Filho, P., Rocha, R., & Santos, R. (2022). Sistemas intensificados de pastagem podem reduzir as emissões de metano entérico de bovinos de corte no Bioma Mata Atlântica? Agronomy, 12(11), 2738. https://doi.org/10.3390/agronomy12112738
Morgan, C., Caldwell, S., Heath, J., & Lee, S. (2024). Review: Exploring the use of precision livestock farming for small ruminant welfare management. Animal, 18(7), 101185. https://doi.org/10.1016/j.animal.2024.101185
Nkrumah, J. D., Okine, E. K., & Mathison, G. W. (2006). Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. Journal of Animal Science, 84(84), 145-153.
OECD-FAO (Organisation for Economic Co-operation and Development; Food and Agriculture Organization). (2024). OECD-FAO Agricultural Outlook 2024-2033. OECD Publishing. https://doi.org/10.1787/agr_outlook-2024-en
Pepeta, B. N., Hassen, A., & Tesfamarian, E. H. (2024). Quantifying the impact of different dietary rumen modulating strategies on enteric methane emission and productivity in ruminant livestock: A meta-analysis. Animals, 14(5), 763. https://doi.org/10.3390/ani14050763
Pickering, N. K., Hess, M., & Jonker, G. (2015). Animal board invited review: Genetic possibilities to reduce enteric methane emissions from ruminants. Animal, 9(9), 1431-1440. http://dx.doi.org/10.1017/s1751731115000968
Pinares-Patiño, C. S., & Clark, H. (2008). Reliability of the sulfur hexafluoride tracer technique for methane emission measurement from individual animals: An overview. Australian Journal of Experimental Agriculture, 48(2), 223–229. https://doi.org/10.1071/EA07297
Pinares-Patiño, C. S., Hickey, S. M., Young, E. A., Dodds, K. G., MacLean, S., Molano, G., Sandoval, E., Kjestrup, H., Harland, R., Hunt, C., Pickering, N. K., & McEwan, J. C. (2013). Heritability estimates of methane emissions from sheep. Animal, 7(S2), 316–321. https://doi.org/10.1017/S1751731113000864
Pinto, T. P. (2019). Produtividade e mitigação de gases de efeito estufa do setor de pecuária brasileiro. (Tese de Doutorado em Economia Aplicada). Universidade Federal de Viçosa, Viçosa.
Pszczola, M., Rzewuska, K., Mucha, S., & Strabel, T. (2017). Heritability of methane emissions from dairy cows over a lactation measured on commercial farms. Journal of Animal Science, 95(11), 4813–4819. https://doi.org/10.2527/jas2017.1842
Ranganathan, J., Vennard, D., Waite, R., Dumas, P., Lipinski, B., & Searchinger, T. (2018). Shifting diets for a sustainable food future. World Resources Institute. https://www.wri.org/research/shifting-diets-sustainable-food-future
Reynolds, C. K. (2000). Rumen microbiology and feed efficiency in dairy cattle. Journal of Dairy Science, 83 (7), 1433–1445. https://doi.org/10.3168/jds.S0022-0302(00)75012-4
Rios Rado, W. M., Huamaní, J. C., & Quispe, E. C. (2023). Development of a mobile open-circuit respiration head hood system for measuring gas exchange in camelids in the Andean Plateau. Animals, 13 (6), 1011. https://doi.org/10.3390/ani13061011
Rodrigues, P. H. M., Oliveira, P. P. A., & Berndt, A. (2021). Uso de leguminosas na dieta de ruminantes: adaptação às mudanças climáticas e mitigação da emissão de gases de efeito estufa. In P. H. M. Rodrigues (Org.), Novos desafios da pesquisa em nutrição e produção animal (pp. 182-205). 5D Editora.
Saleem, A. S. A., Abdelnour, S., Bassiony, S. M., Abdel-Monem, U. M., Elaref, M. Y., & Al–Marakby, K. M. (2025). Probiotic supplementation in sustainable sheep production: Impacts on health, performance, and methane mitigation. Tropical Animal Health and Production, 57, Article 206. https://doi.org/10.1007/s11250-024-04770-6
Santana, M. H. A., Gomes, R. C., Ferraz, J. B. S., & Rossi, J. P. (2014). Medidas de eficiência alimentar para avaliação de bovinos de corte. Scientia Agraria Paranaensis, 13, 95-107.
Sene, G. A. de, Santos, D. G., & Andrade, S. (2019). Práticas estratégicas com vistas à mitigação dos gases do efeito estufa na produção de bovinos a pasto. In P. H. M. Rodrigues (Org.), Novos Desafios da Pesquisa em Nutrição e Produção Animal (pp. 268-294). Editora 5D. Recuperado de https://www.researchgate.net/publication/337325398_Novos_Desafios_da_Pesquisa_em_Nutricao_e_Producao_Animal/link/5dd2830ea6fdcc7e138a8e46/download
Silva, É. B. R., Silva, J. A. R., Silva, W. C., & Santos, S. A. (2024). A review of the rumen microbiota and the different molecular techniques used to identify microorganisms found in the rumen fluid of ruminants. Animals, 14(10), 1448. https://doi.org/10.3390/ani14101448
Smith, P., Reay, D., & Smith, J. (2021). Agricultural methane emissions and the potential for mitigation. Philosophical Transactions of the Royal Society A, 379(2210), 20200451. https://doi.org/10.1098/rsta.2020.0451
Sorg, D. (2022). Measuring livestock CH₄ emissions with the Laser Methane Detector: A review. Methane, 1(1), 38–57. https://doi.org/10.3390/methane1010004
Sun, X., Cheng, L., Jonker, A., Munidasa, S., & Pacheco, D. (2022). A review: Plant carbohydrate types—The potential impact on ruminant methane emissions. Frontiers in Veterinary Science, 9, 880115. https://doi.org/10.3389/fvets.2022.880115
Tadesse, D., Puchala, R., Yirga, H., Patra, A. K., Gipson, T. A., Min, B. R., & Goetsch, A. L. (2024). Determining appropriate numbers and times of daily measurements using GreenFeed system to estimate ruminal methane emission of meat goats. Animals, 14(6), 835. https://doi.org/10.3390/ani14060835
Tedeschi, L. O. (2023). Review: The prevailing mathematical modeling classifications and paradigms to support the advancement of sustainable animal production. Animal, 100, 100813. https://doi.org/10.1016/j.animal.2023.100813
Thompson, J. P., Stergiadis, S., Carballo, O. C., Zeller, W. E., Yan, T., Lively, F., Gilliland, J., Purusottam, R. N., Huws, S., & Theodoridou, K. (2025). Willow silvopastoral systems as a strategy to reduce methane emissions while maintaining cattle performance. Scientific Reports, 15, 19310. https://doi.org/10.1038/s41598-025-02289-0
Thornton, P. K., & Herrero, M. (2010). Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proceedings of the National Academy of Sciences, 107(46), 19667–19672. https://doi.org/10.1073/pnas.0912890107
United Nations Environment Programme. (2024). Emissions gap report 2024: No more hot air please: With a massive gap between rhetoric and reality, countries draft new climate commitments. UNEP. https://wedocs.unep.org/handle/20.500.11822/46404
Vijn, S., Van Lingen, H. J., & van Harten, A. (2020). Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Frontiers in Veterinary Science, 7(1), 1-9. http://dx.doi.org/10.3389/fvets.2020.597430
Waghorn, G. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Animal Feed Science and Technology, 147(1–3), 116–139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
Zambrano, E. R. A., Edvan, R. L., Oliveira, M. E., Araujo, D. L. C., Costa, J. V., Silva, I. R., ... Dias-Silva, T. P. (2021). Characterization of pasture of Andropogon grass and behavior of grazing goats in a silvopastoral system. Agroforestry Systems, 95(6), 1155-1165. https://doi.org/10.1007/s10457-021-00638-2
Zaragoza-Esparza, J., Ku-Vera, J. C., & González-Ríos, H. (2020). Tropical legumes as natural methane inhibitors in ruminant nutrition. Tropical Animal Health and Production, 52(4), 1689–1699. https://doi.org/10.1007/s11250-019-02187-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Cintia Mirely de Araújo, Elves Oliveira da Silva, Joanigo Joanigo Fernando Simão, Istefani Moreira Mota, Glayciane Costa Gois, Cleyton de Almeida Araújo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
O periodico Diversitas Journal expressa que os artigos são de unica responsabilidade dos Autores, conhecedores da legislação Brasileira e internacional. Os artigos são revisados pelos pares e devem ter o cuidado de avisar da possível incidencia de plagiarismo. Contudo o plagio é uma ação incontestavel dos autores. A Diversitas Journal não publicará artigos com indicios de Plagiarismos. Artigos com plagios serão tratados em conformidade com os procedimentos de plagiarismo COPE.
A violação dos direitos autorais constitui crime, previsto no artigo 184, do Código Penal Brasileiro:
“Art. 184 Violar direitos de autor e os que lhe são conexos: Pena – detenção, de 3 (três) meses a 1 (um) ano, ou multa. § 1o Se a violação consistir em reprodução total ou parcial, com intuito de lucro direto ou indireto, por qualquer meio ou processo, de obra intelectual, interpretação, execução ou fonograma, sem autorização expressa do autor, do artista intérprete ou executante, do produtor, conforme o caso, ou de quem os represente: Pena – reclusão, de 2 (dois) a 4 (quatro) anos, e multa.”











