Vozes na sala de aula: desenvolvimento e validação de uma escala alternativa para avaliação docente

Autores

DOI:

https://doi.org/10.48017/dj.v9i3.3111

Palavras-chave:

Exploratory Factor Analysis, Faculty Performance Evaluation, Mixed-Methods Approach, Student Surveys, Teaching Effectiveness

Resumo

Este estudo apresenta uma abordagem inovadora para a avaliação do desempenho dos docentes na Faculdade de Educação da Universidade Tecnológica de Rizal, por meio do desenvolvimento e validação de uma escala de avaliação alternativa. À medida que os cenários educacionais evoluem, há uma necessidade crítica de adaptar os métodos de avaliação para se alinhar às tendências pedagógicas atuais e aos objetivos institucionais. Esta pesquisa aborda essas necessidades empregando uma abordagem de métodos mistos que integra percepções qualitativas de Discussões em Grupo Focal com dados quantitativos coletados por meio de pesquisas com estudantes. Por meio de uma análise fatorial exploratória rigorosa, o estudo identifica e valida quatro dimensões-chave do desempenho docente, a saber: Engajamento e Relevância Pedagógica, Ambiente de Ensino de Apoio, Facilitação da Aprendizagem Ativa e Clima e Dinâmica da Sala de Aula. Cada dimensão é meticulosamente avaliada quanto à confiabilidade utilizando os coeficientes alfa de Cronbach e ômega de McDonald, garantindo robustez e consistência na medição. Os resultados destacam a importância de incorporar as perspectivas dos estudantes para avaliar de forma abrangente a eficácia do ensino e a dinâmica da sala de aula. Ao capturar diversos aspectos do desempenho dos docentes, incluindo estratégias instrucionais, facilitação do engajamento dos estudantes e práticas de gerenciamento da sala de aula, a escala desenvolvida fornece uma ferramenta abrangente para melhorar a qualidade do ensino e os resultados de aprendizagem. O rigor metodológico do estudo, ancorado nos princípios da teoria da medição, aprimora a validade e a aplicabilidade do quadro de avaliação no contexto do ensino superior. Em última análise, esta pesquisa contribui com insights valiosos e implicações práticas para educadores, administradores e formuladores de políticas que buscam fomentar um ambiente educacional de apoio e inclusivo, propício ao sucesso acadêmico e ao desenvolvimento dos docentes

Métricas

Carregando Métricas ...

Biografia do Autor

Samuel A. Balbin, Rizal Technological University. Mandaluyong City, Metro Manila, Philippines

0000-0003-3844-1453. ; Rizal Technological University. Mandaluyong City, Metro Manila, Philippines. sabalbin@rtu.edu.ph

Faith Micah Abenes-Balbin, Rizal Technological University. Mandaluyong City, Metro Manila, Philippines

0009-0008-6086-2450. ; Rizal Technological University. Mandaluyong City, Metro Manila, Philippines. fmdmabenes@rtu.edu.ph

Wendelyn A. Samarita, Rizal Technological University. Mandaluyong City, Metro Manila, Philippines

 0000-0001-8234-9385. ; Rizal Technological University. Mandaluyong City, Metro Manila, Philippines. wasamarita@rtu.edu.ph

Vincent Anthony De Vera, Rizal Technological University. Mandaluyong City, Metro Manila, Philippines

 0009-0004-8634-1662. ; Rizal Technological University. Mandaluyong City, Metro Manila, Philippines. vadevera@rtu.edu.ph

Carina Nocillado, Rizal Technological University. Mandaluyong City, Metro Manila, Philippines

0009-0005-6135-7374. ; Rizal Technological University. Mandaluyong City, Metro Manila, Philippines. cnocillado@rtu.edu.ph

Liberty Gay Manalo, Rizal Technological University. Mandaluyong City, Metro Manila, Philippines

0000-0001-8909-838X. ; Rizal Technological University. Mandaluyong City, Metro Manila, Philippines. lgcmanalo@rtu.edu.ph

Referências

Acar, S., Savci, S., Keskinoğlu, P., Akdeniz, B., Özpelit, E., Özcan Kahraman, B., … Sevinc, C. (2016). Tampa Scale of Kinesiophobia for Heart Turkish Version Study: cross-cultural adaptation, exploratory factor analysis, and reliability. Journal of Pain Research, 9, 445–451. https://doi.org/10.2147/JPR.S105766

Al Maktoum, S. B., & Al Kaabi, A. M. (2024). Exploring teachers’ experiences within the teacher evaluation process: A qualitative multi-case study. Cogent Education, 11(1). https://doi.org/10.1080/2331186X.2023.2287931

Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., et al. (2024). Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. Asia Pacific Journal of Management, 41(3), 745–783. https://doi.org/10.1007/s10490-023-09871-y

Dawadi, S., Shrestha, S., & Giri, R. A. (2021). Mixed-Methods Research: A Discussion on its Types, Challenges, and Criticisms. Journal of Practical Studies in Education, 2(2), 25–36. https://doi.org/10.46809/jpse.v2i2.20

Di Leo, G., Sardanelli, F. (2020). Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach. Eur Radiol Exp 4, 18. https://doi.org/10.1186/s41747-020-0145-y

Draucker, C. B., Rawl, S. M., Vode, E., & Carter-Harris, L. (2020). Integration Through Connecting in Explanatory Sequential Mixed Method Studies. Western Journal of Nursing Research, 42(12), 1137–1147. https://doi.org/10.1177/0193945920914647

Fetters, M. D., & Tajima, C. (2022). Joint Displays of Integrated Data Collection in Mixed Methods Research. International Journal of Qualitative Methods, 21. https://doi.org/10.1177/16094069221104564

Hayes, A. F., & Coutts, J. J. (2020). Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…. Communication Methods and Measures, 14(1), 1–24. https://doi.org/10.1080/19312458.2020.1718629

Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide No. 131. Medical Teacher, 42(8), 846–854. https://doi.org/10.1080/0142159X.2020.1755030

Kumar, A., Sarkar, M., Davis, E., et al. (2021). Impact of the COVID-19 pandemic on teaching and learning in health professional education: A mixed methods study protocol. BMC Medical Education, 21, 439. https://doi.org/10.1186/s12909-021-02871-w

Kumar, L., & Jana, S. K. (2022). Advances in absorbents and techniques used in wet and dry FGD: A critical review. Reviews in Chemical Engineering, 38(7), 843–880. https://doi.org/10.1515/revce-2020-0029

Lamm, K. W., Lamm, A. J., Davis, K., Sanders, C. E., & Powell, A. (2021). Perceptions of knowledge management capacity within extension services: An exploratory factor analysis approach. The Journal of Agricultural Education and Extension, 29(1), 53–74. https://doi.org/10.1080/1389224X.2021.1984956

Lee, J., Lim, C., & Kim, H. (2017). Development of an instructional design model for flipped learning in higher education. Educational Technology Research and Development, 65, 427–453. https://doi.org/10.1007/s11423-016-9502-1

McIntosh, A. R. (2021). Comparison of Canonical Correlation and Partial Least Squares analyses of simulated and empirical data. arXiv preprint arXiv:2107.06867. https://doi.org/10.48550/arXiv.2107.06867

Monteiro, V., Carvalho, C., & Santos, N. N. (2021). Creating a Supportive Classroom Environment Through Effective Feedback: Effects on Students’ School Identification and Behavioral Engagement. Frontiers in Education, 6, Article 661736. https://doi.org/10.3389/feduc.2021.661736

Murphy, K. R. (2020). Performance evaluation will not die, but it should. Human Resource Management Journal, 30(1), 13–31. https://doi.org/10.1111/1748-8583.12259

Nguyen, K. A., Borrego, M., Finelli, C. J., et al. (2021). Instructor strategies to aid implementation of active learning: A systematic literature review. International Journal of STEM Education, 8, 9. https://doi.org/10.1186/s40594-021-00270-7

Noor, S., Tajik, O., & Golzar, J. (2022). Simple random sampling. International Journal of Education & Language Studies, 1(2), 78–82. https://doi.org/10.22034/ijels.2022.162982

Pedler, M., Hudson, S., & Yeigh, T. (2020). The teachers’ role in student engagement: A review. Australian Journal of Teacher Education (Online), 45(3), 48–62. https://search.informit.org/doi/10.3316/ielapa.270830255864389

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778

Ragupathi, K., & Lee, A. (2020). Beyond fairness and consistency in grading: The role of rubrics in higher education. In M. Ngo (Ed.), Diversity and Inclusion in Global Higher Education: Lessons from Across Asia (pp. 73–95). Springer. https://doi.org/10.1007/978-981-15-1628-3_3

Resende, M. D. V. D., & Alves, R. S. (2022). Statistical significance, selection accuracy, and experimental precision in plant breeding. Crop Breeding and Applied Biotechnology, 22(3), e42712238. https://doi.org/10.1590/1984-70332022v22n3a31

Schmidt, J. T., & Tang, M. (2020). Digitalization in Education: Challenges, Trends and Transformative Potential. In M. Harwardt, P. J. Niermann, A. Schmutte, & A. Steuernagel (Eds.), Führen und Managen in der digitalen Transformation (pp. 299–318). Springer Gabler. https://doi.org/10.1007/978-3-658-28670-5_16

Saeed, B., Tasmin, R., Mahmood, A., & Hafeez, A. (2022). Development of a multi-item Operational Excellence scale: Exploratory and confirmatory factor analysis. The TQM Journal, 34(3), 576–602. https://doi.org/10.1108/TQM-10-2020-0227

Shrestha, N. (2021). Factor analysis as a tool for survey analysis. American Journal of Applied Mathematics and Statistics, 9(1), 4–11. https://doi.org/10.12691/ajams-9-1-2

Shrestha, N., Poudel, A., & Limbong, T. (2018). Using Google form for student worksheet as learning media. International Journal of Engineering & Technology, 7(3.4), 321–324. https://doi.org/10.14419/ijet.v7i3.4.20125

Simanjuntak, B., & Limbong, T. (2018). Using Google form for student worksheet as learning media. International Journal of Engineering & Technology, 7(3.4), 321–324. https://doi.org/10.14419/ijet.v7i3.4.20125

Sürücü, L., Yıkılmaz, İ., & Maşlakçı, A. (2022). Exploratory factor analysis (EFA) in quantitative researches and practical considerations. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 13(2), 947–965. https://doi.org/10.37989/gumussagbil.1183271

Ursachi, G., Horodnic, I. A., & Zait, A. (2015). How reliable are measurement scales? External factors with indirect influence on reliability estimators. Procedia Economics and Finance, 20, 679-686. https://doi.org/10.1016/S2212-5671(15)00123-9

Wilson, S. M., & Kelley, S. L. (2022). Landscape of teacher preparation programs and teacher candidates. National Academy of Education. https://files.eric.ed.gov/fulltext/ED618996.pdf

Wang, M.-T., Degol, J. L., Amemiya, J., Parr, A., & Guo, J. (2020). Classroom climate and children’s academic and psychological wellbeing: A systematic review and meta-analysis. Developmental Review, 57, Article 100912. https://doi.org/10.1016/j.dr.2020.100912

Xiao, L., & Hau, K.-T. (2023). Performance of Coefficient Alpha and Its Alternatives: Effects of Different Types of Non-Normality. Educational and Psychological Measurement, 83(1), 5-27. https://doi.org/10.1177/00131644221088240

Downloads

Publicado

2024-09-13

Como Citar

Balbin, S. A., Abenes-Balbin, F. M., Samarita, W. A., De Vera, V. A., Nocillado, C., & Manalo, L. G. (2024). Vozes na sala de aula: desenvolvimento e validação de uma escala alternativa para avaliação docente. Diversitas Journal, 9(3). https://doi.org/10.48017/dj.v9i3.3111