Água salina na produção animal: impactos no solo e efeitos indiretos sobre as forragens

Autores

  • Aline Gomes de Andrade Silva Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil https://orcid.org/0009-0001-4467-8150
  • Cintia Mirely de Araújo Universidade Estadual do Piauí. Corrente, PI, Brasil. Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil https://orcid.org/0000-0002-7035-7190
  • Davi Felipe Soares Coelho Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil https://orcid.org/0000-0002-7962-8276
  • Jéssica Daisy do Vale Bezerra Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil
  • Glayciane Costa Gois Universidade Federal do Maranhão. Chapadinha, MA, Brasil https://orcid.org/0000-0002-4624-1825
  • Rita Cássia Rodrigues de Souza Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil https://orcid.org/0000-0001-8636-577X
  • Cleyton de Almeida Araújo Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil https://orcid.org/0000-0003-3636-2890

DOI:

https://doi.org/10.48017/dj.v10i4.3620

Palavras-chave:

Estresse salino, Sodificação, Toxicidade iônica

Resumo

A escassez hídrica em regiões áridas e semiáridas tem intensificado o uso de águas salinas na produção animal e forragens, levantando preocupações quanto aos impactos sobre o solo e no desempenho animal. Esta revisão investiga os principais mecanismos envolvidos nos processos de salinização do solo decorrentes da irrigação com águas de baixa qualidade, destacando os efeitos sobre as propriedades físico-químicas e biológicas do solo, como condutividade elétrica, capacidade de troca catiônica, atividade microbiana e ciclagem de nutrientes. São discutidos os efeitos adversos da salinidade sobre o crescimento e valor nutricional de plantas forrageiras, com ênfase no estresse osmótico, toxicidade iônica e desequilíbrio nutricional. Analisa, ainda, os reflexos da salinidade na nutrição e desempenho produtivo e reprodutivo de ruminantes, ressaltando a necessidade de estratégias integradas como a seleção de espécies tolerantes, o manejo da adubação e o balanceamento mineral das dietas. Os achados evidenciam que, embora a água salina possa ser uma alternativa viável frente à escassez hídrica, seu uso exige um planejamento criterioso para mitigar efeitos negativos nos sistemas produtivos.

Métricas

Carregando Métricas ...

Biografia do Autor

Aline Gomes de Andrade Silva, Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil

0009-0001-4467-8150; Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil. alinegomesandrade057@gmail.com

Cintia Mirely de Araújo, Universidade Estadual do Piauí. Corrente, PI, Brasil. Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil

0000-0002-7035-7190; Universidade Estadual do Piauí. Corrente – PI. Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil. cintia.m.araujo@gmail.com

Davi Felipe Soares Coelho, Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil

0000-0002-7962-8276; Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil. davifscoelho@gmail.com

Jéssica Daisy do Vale Bezerra, Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil

0000-0002-8266-7591; Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil. jessicadaisy.bezerra@gmail.com

Glayciane Costa Gois, Universidade Federal do Maranhão. Chapadinha, MA, Brasil

000-0002-4624-1825; Universidade Federal do Maranhão. Chapadinha, MA, Brasil. glayciane_gois@yahoo.com.br

Rita Cássia Rodrigues de Souza, Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil

0000-0001-8636-577X; Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil. rita.souza@univasf.edu.br

Cleyton de Almeida Araújo, Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil

0000-0003-3636-2890; Universidade Federal do Vale do São Francisco. Petrolina, PE, Brasil. cleyton.araujo@univasf.edu.br

Referências

Abdelnour, S. A., Abd El-Hack, M. E., Noreldin, A. E., Kamel, M., Ghoniem, A. M., Taniguchi, T., ... & Swelum, A. A. (2020). High salt diet affects the reproductive health in animals: An overview. Animals, 10(4), 590. https://doi.org/10.3390/ani10040590

Abdelsattar, M. M., Hussein, A. M. A., El-Ati, A., Afifi, M., Zanouny, A. I., El-Badry, M. O., & Mosaad, G. M. (2020). Impacts of saline water stress on livestock production: A review. SVU-International Journal of Agricultural Sciences, 2(2), 1-19. https://journals.ekb.eg/article_67635.html

Abebe, H., & Tu, Y. (2024). Impact of salt and alkali stress on forage biomass yield, nutritive value, and animal growth performance: A comprehensive review. Grasses, 3(4), 355-368. https://doi.org/10.3390/grasses3040026

Abo Bakr, S., Helal, H. G., Eid, E. Y., Ebeid, H. M., & Nasr, S. A. (2020). Nutritional performance of growing sheep fed silage of salt tolerant plants under South Sinai conditions. Journal of Animal and Poultry Production, 11(12), 535-541.

Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243-248. https://doi.org/10.1007/s10535-009-0046-7

Anower, M. R., Mott, I. W., Peel, M. D., & Wu, Y. (2013). Comparison of salinity tolerance for selected forage grasses and legumes. Crop Science, 53(6), 2595-2608.

Camelo, L. G. G. (2024). Sodium Dynamics in Riparian Soils Impacted by Road Salt: Sorption Mechanisms and Land Use Controls. Dissertação de mestrado, University of Toronto. Recuperado de https://utoronto.scholaris.ca/bitstreams/e336fb65-73d3-4eb0-80d1-70e908024a9f/download

Corwin, D. L., & Yemoto, K. (2020). Salinity: Electrical conductivity and total dissolved solids. Soil Science Society of America Journal, 84(5), 1442-1461. https://doi.org/10.1002/saj2.20154

Demo, A. H., Gemeda, M. K., Abdo, D. R., Daba, C. C., & Gebremedhin, H. (2025). Impact of soil salinity, sodicity, and irrigation water salinity on crop production and coping mechanism in areas of dryland farming. Agrosystems, Geosciences & Environment, 8(1), e70072. https://doi.org/10.1002/agg2.70072

Ding, B., Bai, Y., Guo, S., He, Z., Wang, B., Liu, H., Zhai, J., Cao, Y., Li, Z., Ma, L., Zhang, Z., Zhao, Y., & Wei, T. (2023). Effect of irrigation water salinity on soil characteristics and microbial communities in cotton fields in southern Xinjiang, China. Agronomy, 13(7), 1679. https://doi.org/10.3390/agronomy13071679

El-Ramady, H., Prokisch, J., Mansour, H., Bayoumi, Y. A., Shalaby, T. A., Szczygłowska, M., Piotrowski, K., Gohari, G., Mohamadi, A. A., Fawzy, Z. F., Brevik, E. C., & Solberg, S. Ø. (2024). Review of crop response to soil salinity stress: Possible approaches from leaching to nano-management. Soil Systems, 8(1), 11. https://doi.org/10.3390/soilsystems8010011

Empresa Brasileira de Pesquisa Agropecuária. (2011). Manual de métodos de análise de solo (2ª ed.). Rio de Janeiro, RJ: Embrapa Solos.

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115(3), 327-331. https://doi.org/10.1093/aob/mcu267

Gabr, A. A., Farag, M. E., Shahin, G. F., Gado, H. M., & Salem, A. Z. M. (2023). Impact of protein supply on the productive performance of growing lambs drinking natural saline water and fed low-quality forage under semi-arid conditions. Tropical Animal Health and Production, 55(1), 1-12. https://doi.org/10.1007/s11250-023-03462-1

Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. https://doi.org/10.1080/07352689991309207

Goff, J. P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), 2763-2813. https://doi.org/10.3168/jds.2017-13112

Grattan, S. R., & Grieve, C. M. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127-157. https://doi.org/10.1016/S0304-4238(98)00192-7

Grieve, C. M., Grattan, S. R., & Maas, E. V. (2012). Plant salt tolerance. Agricultural Salinity Assessment and Management, 405-459. https://doi.org/10.1061/9780784411698.ch13

Grimoldi, A. A., & Di Bella, C. E. (2024). Forage plant ecophysiology under different stress conditions. Plants, 13(10), 1302. https://doi.org/10.3390/plants13101302

Gullap, M. K., Karabacak, T., Severoglu, S., Ekinci, M., & Yildirim, E. (2024). Biochar derived from olive oil pomace mitigates salt stress on seedling growth of forage pea. Frontiers in Plant Science, 15, 1398846. https://doi.org/10.3389/fpls.2024.1398846

Hasnain, M., Abideen, Z., Ali, F., Hasanuzzaman, M., Zulfiqar, F., Alam, M. M., ... & Nielsen, B. L. (2023). Potential of halophytes as sustainable fodder production by using saline resources: A review of current knowledge and future directions. Plants, 12(11), 2150. https://doi.org/10.3390/plants12112150

Iritz, A., Espinoza, D., Taye, M. G., Salhab, F., Portnik, Y., Moallem, U., & Ben Meir, Y. A. (2025). Effect of drinking water salinity on lactating cows' water and feed intake, milk yield, and rumen physiology. Animal, 19(2), 101389. https://doi.org/10.1016/j.animal.2024.101389

Khondoker, M., Mandal, S., Gurav, R., & Hwang, S. (2023). Freshwater shortage, salinity increase, and global food production: A need for sustainable irrigation water desalination—A scoping review. Earth, 4(2), 12. https://doi.org/10.3390/earth4020012

Kisekka, I. (2024). Developing a New Foundational Understanding of SAR-Soil Structure Interactions for Improved Management of Agricultural Recycled Water Use. eScholarship, University of California. Recuperado de https://escholarship.org/content/qt7ds618gn/qt7ds618gn.pdf

Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781

Li, J., Li, W., Feng, X., Liu, X., Guo, K., Fan, F., Liu, S., & Jia, S. (2024). Soil organic matter input promotes coastal topsoil desalinization by altering the salt distribution in the soil profile. Agronomy, 14(5), 942. https://doi.org/10.3390/agronomy14050942

Li, Y., Li, W., Jiang, L., Li, E., Yang, X., & Yang, J. (2024). Salinity affects microbial function genes related to nutrient cycling in arid regions. Frontiers in Microbiology, 15, 1407760. https://doi.org/10.3389/fmicb.2024.1407760

López, A., Arroquy, J. I., Hernández, O., Wall, E. H., & DiCostanzo, A. (2021). A meta-analytical evaluation of the effects of high-salt water intake on beef cattle. Journal of Animal Science, 99(8), skab215. https://doi.org/10.1093/jas/skab215

Ma, L., Li, Y., Zeng, T., Feng, S., & Abuduwaili, J. (2024). Assessing surface water quality for sustainable irrigation in Tarim Basin: A study in the summer irrigation period. Applied Water Science, 14(8), 162. https://doi.org/10.1007/s13201-024-02216-0

Mahdee, H. S. (2025). Assessment of Hydraulic conductivity in Iraqi soils (Articular review). Dijlah Journal of Agricultural Sciences, 1(1), 15-29. Recuperado de https://djas.uowasit.edu.iq/index.php/djas/article/download/163/143

Masters, D. G., Benes, S. E., & Norman, H. C. (2007). Biosaline agriculture for forage and livestock production. Agriculture, Ecosystems & Environment, 119(3-4), 234-248.

Mishra, U. N., Chauhan, J., Singhal, R. K., Anuragi, H., Dey, P., Lal, D., Pandey, S., Gupta, N. K., Nayak, J. K., & Sajeevan, R. S. (2025). Abiotic stress responses in forage crops and grasses: the role of secondary metabolites and biotechnological interventions. Frontiers in Plant Science, 16, 1542519. https://doi.org/10.3389/fpls.2025.1542519

Moradi, F., Amirinejad, A. A., & Ranjbar, F. (2024). Impacts of Different Amendments and Water Qualities on Soluble and Exchangeable Phases and Hydraulic Conductivity of a Calcareous Soil. International Journal of Environmental Science and Technology, 21, 7087-7102. https://doi.org/10.1007/s41742-024-00600-x

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

National Research Council. (2001). Nutrient requirements of dairy cattle. National Academies Press.

Norman, H. C., Masters, D. G., & Barrett-Lennard, E. G. (2013). Halophytes as forages in saline landscapes: Interactions between plant genotype and environment change their feeding value to ruminants. Environmental and Experimental Botany, 92, 96-109. https://doi.org/10.1016/j.envexpbot.2012.07.003

Nunes Filho, J., Sá, V. A. L., Sousa, A. R., Ferraz, L. G. B., Tabosa, J. N., Santos, V. F., Silva, A. B. (2008). Gramíneas forrageiras tropicais em solo salino-sódico, sob irrigação no vale do rio Moxotó - Pernambuco. Pesquisa Agropecuária Pernambucana, 14 (especial), 19-24.

Omar, M. M., Massawe, B. H. J., Shitindi, M. J., Mpanda, M. M., Kimaro, D. N., Kihupi, N. I., ... & Wickama, J. M. (2024). Assessment of salt-affected soil in selected rice irrigation schemes in Tanzania: Understanding salt types for optimizing management approaches. Frontiers in Soil Science, 4, 1372838. https://doi.org/10.3389/fsoil.2024.1372838

Omuto, C. T., Kome, G. K., Ramakhnna, S. J., Muzira, N. M., Ruley, J. A., Jayeoba, O. J., Raharimanana, V., Ansah, A. O., Khamis, N. A. … & Nyamai, N. (2024). Trend of soil salinization in Africa and implications for agro-chemical use in semi-arid croplands. Science of The Total Environment, 951, 175503. https://doi.org/10.1016/j.scitotenv.2024.175503

Pannell, D. J. & Ewing, M. A. (2006). Managing secondary dryland salinity: Options and challenges. Agricultural Water Management, 80(1-3), 132-146. https://doi.org/10.1016/j.agwat.2005.07.003

Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282-295. https://doi.org/10.1111/1477-8947.12054

Saffan, M. M., El-Henawy, A. S., Agezo, N. A., & Abd El-Hakeem, S. S. (2024). Effect of irrigation water quality on chemical and physical properties of soils. Egyptian Journal of Soil Science, 64(1). Disponível em: https://journals.ekb.eg/article_367086.html

Shabala, S., & Munns, R. (2022). Salinity stress: physiological constraints and adaptive mechanisms. Plant Stress Physiology, 59-93. https://doi.org/10.1079/9781845939953.0059

Shokri, N., Hassani, A., & Sahimi, M. (2024). Multi‐scale soil salinization dynamics from global to pore scale: A review. Reviews of Geophysics, 62(1), e2023RG000804. https://doi.org/10.1029/2023RG000804

Silva, J. L. de A., Medeiros, J. F. de, Alves, S. S. V., Oliveira, F. A. de, Silva Junior, M. J. da, & Nascimento, I. B. do. (2014). Uso de águas salinas como alternativa na irrigação e produção de forragem no semiárido nordestino. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(Suplemento), 66–72.

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. https://doi.org/10.1093/aob/mcu239

Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831. https://doi.org/10.3389/fenvs.2021.712831

Tulu, D., Hundessa, F., Gadissa, S., Eshetu, M., & Muleta, D. (2024). Review on the influence of water quality on livestock production in the era of climate change: perspectives from dryland regions. Cogent Food & Agriculture, 10(1), 2306726. https://doi.org/10.1080/23311932.2024.2306726

Van Soest, P. J. (1994). Nutritional ecology of the ruminant. Cornell University Press.

Vranešević, M., Zemunac, R., Grabić, J., & Salvai, A. (2024). Hydrochemical characteristics and suitability assessment of groundwater quality for irrigation. Applied Sciences, 14(2), 615. https://doi.org/10.3390/app14020615

Yirga, H., Urge, M., Goetsch, A. L., Tolera, A., Puchala, R., Tsukahara, Y., ... & Sahlu, T. (2024). Effects of salinity levels of drinking water on water intake and loss, feed utilization, body weight, thermoregulatory traits, and blood constituents in growing and mature Blackhead Ogaden sheep and Somali goats. Animals, 14(11), 1565. https://doi.org/10.3390/ani14111565

Downloads

Publicado

2025-12-19

Como Citar

Gomes de Andrade Silva, A., Mirely de Araújo, C., Felipe Soares Coelho, D., Daisy do Vale Bezerra, J., Costa Gois, G., Cássia Rodrigues de Souza, R., & de Almeida Araújo, C. (2025). Água salina na produção animal: impactos no solo e efeitos indiretos sobre as forragens. Diversitas Journal, 10(4), 1526–1544. https://doi.org/10.48017/dj.v10i4.3620