Saline water in animal production: impacts on soil and indirect effects on forage.
DOI:
https://doi.org/10.48017/dj.v10i4.3620Keywords:
Saline stress, Remove Saline , Remove Saline stress, Sodification, Remove Sodification IonicAbstract
Water scarcity in arid and semiarid regions has intensified the use of saline waters in animal and forage production, raising concerns about the impacts on soil and animal performance. This review investigates the main mechanisms involved in soil salinization processes resulting from irrigation with low-quality water, highlighting the effects on soil physicochemical and biological properties, such as electrical conductivity, cation exchange capacity, microbial activity and nutrient cycling. The adverse effects of salinity on the growth and nutritional value of forage plants are discussed, with emphasis on osmotic stress, ionic toxicity and nutritional imbalance. It also analyzes the effects of salinity on the nutrition and productive and reproductive performance of ruminants, highlighting the need for integrated strategies such as the selection of tolerant species, fertilizer management and mineral balancing of diets. The findings show that, although saline water may be a viable alternative to water scarcity, its use requires careful planning to mitigate negative effects on production systems.
Metrics
References
Abdelnour, S. A., Abd El-Hack, M. E., Noreldin, A. E., Kamel, M., Ghoniem, A. M., Taniguchi, T., ... & Swelum, A. A. (2020). High salt diet affects the reproductive health in animals: An overview. Animals, 10(4), 590. https://doi.org/10.3390/ani10040590
Abdelsattar, M. M., Hussein, A. M. A., El-Ati, A., Afifi, M., Zanouny, A. I., El-Badry, M. O., & Mosaad, G. M. (2020). Impacts of saline water stress on livestock production: A review. SVU-International Journal of Agricultural Sciences, 2(2), 1-19. https://journals.ekb.eg/article_67635.html
Abebe, H., & Tu, Y. (2024). Impact of salt and alkali stress on forage biomass yield, nutritive value, and animal growth performance: A comprehensive review. Grasses, 3(4), 355-368. https://doi.org/10.3390/grasses3040026
Abo Bakr, S., Helal, H. G., Eid, E. Y., Ebeid, H. M., & Nasr, S. A. (2020). Nutritional performance of growing sheep fed silage of salt tolerant plants under South Sinai conditions. Journal of Animal and Poultry Production, 11(12), 535-541.
Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243-248. https://doi.org/10.1007/s10535-009-0046-7
Anower, M. R., Mott, I. W., Peel, M. D., & Wu, Y. (2013). Comparison of salinity tolerance for selected forage grasses and legumes. Crop Science, 53(6), 2595-2608.
Camelo, L. G. G. (2024). Sodium Dynamics in Riparian Soils Impacted by Road Salt: Sorption Mechanisms and Land Use Controls. Dissertação de mestrado, University of Toronto. Recuperado de https://utoronto.scholaris.ca/bitstreams/e336fb65-73d3-4eb0-80d1-70e908024a9f/download
Corwin, D. L., & Yemoto, K. (2020). Salinity: Electrical conductivity and total dissolved solids. Soil Science Society of America Journal, 84(5), 1442-1461. https://doi.org/10.1002/saj2.20154
Demo, A. H., Gemeda, M. K., Abdo, D. R., Daba, C. C., & Gebremedhin, H. (2025). Impact of soil salinity, sodicity, and irrigation water salinity on crop production and coping mechanism in areas of dryland farming. Agrosystems, Geosciences & Environment, 8(1), e70072. https://doi.org/10.1002/agg2.70072
Ding, B., Bai, Y., Guo, S., He, Z., Wang, B., Liu, H., Zhai, J., Cao, Y., Li, Z., Ma, L., Zhang, Z., Zhao, Y., & Wei, T. (2023). Effect of irrigation water salinity on soil characteristics and microbial communities in cotton fields in southern Xinjiang, China. Agronomy, 13(7), 1679. https://doi.org/10.3390/agronomy13071679
El-Ramady, H., Prokisch, J., Mansour, H., Bayoumi, Y. A., Shalaby, T. A., Szczygłowska, M., Piotrowski, K., Gohari, G., Mohamadi, A. A., Fawzy, Z. F., Brevik, E. C., & Solberg, S. Ø. (2024). Review of crop response to soil salinity stress: Possible approaches from leaching to nano-management. Soil Systems, 8(1), 11. https://doi.org/10.3390/soilsystems8010011
Empresa Brasileira de Pesquisa Agropecuária. (2011). Manual de métodos de análise de solo (2ª ed.). Rio de Janeiro, RJ: Embrapa Solos.
Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115(3), 327-331. https://doi.org/10.1093/aob/mcu267
Gabr, A. A., Farag, M. E., Shahin, G. F., Gado, H. M., & Salem, A. Z. M. (2023). Impact of protein supply on the productive performance of growing lambs drinking natural saline water and fed low-quality forage under semi-arid conditions. Tropical Animal Health and Production, 55(1), 1-12. https://doi.org/10.1007/s11250-023-03462-1
Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. https://doi.org/10.1080/07352689991309207
Goff, J. P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), 2763-2813. https://doi.org/10.3168/jds.2017-13112
Grattan, S. R., & Grieve, C. M. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127-157. https://doi.org/10.1016/S0304-4238(98)00192-7
Grieve, C. M., Grattan, S. R., & Maas, E. V. (2012). Plant salt tolerance. Agricultural Salinity Assessment and Management, 405-459. https://doi.org/10.1061/9780784411698.ch13
Grimoldi, A. A., & Di Bella, C. E. (2024). Forage plant ecophysiology under different stress conditions. Plants, 13(10), 1302. https://doi.org/10.3390/plants13101302
Gullap, M. K., Karabacak, T., Severoglu, S., Ekinci, M., & Yildirim, E. (2024). Biochar derived from olive oil pomace mitigates salt stress on seedling growth of forage pea. Frontiers in Plant Science, 15, 1398846. https://doi.org/10.3389/fpls.2024.1398846
Hasnain, M., Abideen, Z., Ali, F., Hasanuzzaman, M., Zulfiqar, F., Alam, M. M., ... & Nielsen, B. L. (2023). Potential of halophytes as sustainable fodder production by using saline resources: A review of current knowledge and future directions. Plants, 12(11), 2150. https://doi.org/10.3390/plants12112150
Iritz, A., Espinoza, D., Taye, M. G., Salhab, F., Portnik, Y., Moallem, U., & Ben Meir, Y. A. (2025). Effect of drinking water salinity on lactating cows' water and feed intake, milk yield, and rumen physiology. Animal, 19(2), 101389. https://doi.org/10.1016/j.animal.2024.101389
Khondoker, M., Mandal, S., Gurav, R., & Hwang, S. (2023). Freshwater shortage, salinity increase, and global food production: A need for sustainable irrigation water desalination—A scoping review. Earth, 4(2), 12. https://doi.org/10.3390/earth4020012
Kisekka, I. (2024). Developing a New Foundational Understanding of SAR-Soil Structure Interactions for Improved Management of Agricultural Recycled Water Use. eScholarship, University of California. Recuperado de https://escholarship.org/content/qt7ds618gn/qt7ds618gn.pdf
Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781
Li, J., Li, W., Feng, X., Liu, X., Guo, K., Fan, F., Liu, S., & Jia, S. (2024). Soil organic matter input promotes coastal topsoil desalinization by altering the salt distribution in the soil profile. Agronomy, 14(5), 942. https://doi.org/10.3390/agronomy14050942
Li, Y., Li, W., Jiang, L., Li, E., Yang, X., & Yang, J. (2024). Salinity affects microbial function genes related to nutrient cycling in arid regions. Frontiers in Microbiology, 15, 1407760. https://doi.org/10.3389/fmicb.2024.1407760
López, A., Arroquy, J. I., Hernández, O., Wall, E. H., & DiCostanzo, A. (2021). A meta-analytical evaluation of the effects of high-salt water intake on beef cattle. Journal of Animal Science, 99(8), skab215. https://doi.org/10.1093/jas/skab215
Ma, L., Li, Y., Zeng, T., Feng, S., & Abuduwaili, J. (2024). Assessing surface water quality for sustainable irrigation in Tarim Basin: A study in the summer irrigation period. Applied Water Science, 14(8), 162. https://doi.org/10.1007/s13201-024-02216-0
Mahdee, H. S. (2025). Assessment of Hydraulic conductivity in Iraqi soils (Articular review). Dijlah Journal of Agricultural Sciences, 1(1), 15-29. Recuperado de https://djas.uowasit.edu.iq/index.php/djas/article/download/163/143
Masters, D. G., Benes, S. E., & Norman, H. C. (2007). Biosaline agriculture for forage and livestock production. Agriculture, Ecosystems & Environment, 119(3-4), 234-248.
Mishra, U. N., Chauhan, J., Singhal, R. K., Anuragi, H., Dey, P., Lal, D., Pandey, S., Gupta, N. K., Nayak, J. K., & Sajeevan, R. S. (2025). Abiotic stress responses in forage crops and grasses: the role of secondary metabolites and biotechnological interventions. Frontiers in Plant Science, 16, 1542519. https://doi.org/10.3389/fpls.2025.1542519
Moradi, F., Amirinejad, A. A., & Ranjbar, F. (2024). Impacts of Different Amendments and Water Qualities on Soluble and Exchangeable Phases and Hydraulic Conductivity of a Calcareous Soil. International Journal of Environmental Science and Technology, 21, 7087-7102. https://doi.org/10.1007/s41742-024-00600-x
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
National Research Council. (2001). Nutrient requirements of dairy cattle. National Academies Press.
Norman, H. C., Masters, D. G., & Barrett-Lennard, E. G. (2013). Halophytes as forages in saline landscapes: Interactions between plant genotype and environment change their feeding value to ruminants. Environmental and Experimental Botany, 92, 96-109. https://doi.org/10.1016/j.envexpbot.2012.07.003
Nunes Filho, J., Sá, V. A. L., Sousa, A. R., Ferraz, L. G. B., Tabosa, J. N., Santos, V. F., Silva, A. B. (2008). Gramíneas forrageiras tropicais em solo salino-sódico, sob irrigação no vale do rio Moxotó - Pernambuco. Pesquisa Agropecuária Pernambucana, 14 (especial), 19-24.
Omar, M. M., Massawe, B. H. J., Shitindi, M. J., Mpanda, M. M., Kimaro, D. N., Kihupi, N. I., ... & Wickama, J. M. (2024). Assessment of salt-affected soil in selected rice irrigation schemes in Tanzania: Understanding salt types for optimizing management approaches. Frontiers in Soil Science, 4, 1372838. https://doi.org/10.3389/fsoil.2024.1372838
Omuto, C. T., Kome, G. K., Ramakhnna, S. J., Muzira, N. M., Ruley, J. A., Jayeoba, O. J., Raharimanana, V., Ansah, A. O., Khamis, N. A. … & Nyamai, N. (2024). Trend of soil salinization in Africa and implications for agro-chemical use in semi-arid croplands. Science of The Total Environment, 951, 175503. https://doi.org/10.1016/j.scitotenv.2024.175503
Pannell, D. J. & Ewing, M. A. (2006). Managing secondary dryland salinity: Options and challenges. Agricultural Water Management, 80(1-3), 132-146. https://doi.org/10.1016/j.agwat.2005.07.003
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282-295. https://doi.org/10.1111/1477-8947.12054
Saffan, M. M., El-Henawy, A. S., Agezo, N. A., & Abd El-Hakeem, S. S. (2024). Effect of irrigation water quality on chemical and physical properties of soils. Egyptian Journal of Soil Science, 64(1). Disponível em: https://journals.ekb.eg/article_367086.html
Shabala, S., & Munns, R. (2022). Salinity stress: physiological constraints and adaptive mechanisms. Plant Stress Physiology, 59-93. https://doi.org/10.1079/9781845939953.0059
Shokri, N., Hassani, A., & Sahimi, M. (2024). Multi‐scale soil salinization dynamics from global to pore scale: A review. Reviews of Geophysics, 62(1), e2023RG000804. https://doi.org/10.1029/2023RG000804
Silva, J. L. de A., Medeiros, J. F. de, Alves, S. S. V., Oliveira, F. A. de, Silva Junior, M. J. da, & Nascimento, I. B. do. (2014). Uso de águas salinas como alternativa na irrigação e produção de forragem no semiárido nordestino. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(Suplemento), 66–72.
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. https://doi.org/10.1093/aob/mcu239
Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831. https://doi.org/10.3389/fenvs.2021.712831
Tulu, D., Hundessa, F., Gadissa, S., Eshetu, M., & Muleta, D. (2024). Review on the influence of water quality on livestock production in the era of climate change: perspectives from dryland regions. Cogent Food & Agriculture, 10(1), 2306726. https://doi.org/10.1080/23311932.2024.2306726
Van Soest, P. J. (1994). Nutritional ecology of the ruminant. Cornell University Press.
Vranešević, M., Zemunac, R., Grabić, J., & Salvai, A. (2024). Hydrochemical characteristics and suitability assessment of groundwater quality for irrigation. Applied Sciences, 14(2), 615. https://doi.org/10.3390/app14020615
Yirga, H., Urge, M., Goetsch, A. L., Tolera, A., Puchala, R., Tsukahara, Y., ... & Sahlu, T. (2024). Effects of salinity levels of drinking water on water intake and loss, feed utilization, body weight, thermoregulatory traits, and blood constituents in growing and mature Blackhead Ogaden sheep and Somali goats. Animals, 14(11), 1565. https://doi.org/10.3390/ani14111565
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aline Gomes de Andrade Silva, Cintia Mirely de Araújo, Davi Felipe Soares Coelho, Jéssica Daisy do Vale Bezerra, Glayciane Costa Gois, Rita Cássia Rodrigues de Souza, Cleyton de Almeida Araújo

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Diversitas Journal expresses that the articles are the sole responsibility of the Authors, who are familiar with Brazilian and international legislation.
Articles are peer-reviewed and care should be taken to warn of the possible incidence of plagiarism. However, plagiarism is an indisputable action by the authors.
The violation of copyright is a crime, provided for in article 184 of the Brazilian Penal Code: “Art. 184 Violating copyright and related rights: Penalty - detention, from 3 (three) months to 1 (one) year, or fine. § 1 If the violation consists of total or partial reproduction, for the purpose of direct or indirect profit, by any means or process, of intellectual work, interpretation, performance or phonogram, without the express authorization of the author, the performer, the producer , as the case may be, or whoever represents them: Penalty - imprisonment, from 2 (two) to 4 (four) years, and a fine. ”











