Effect of salicylic acid application in two basil cultivars submitted to water deficit
DOI:
https://doi.org/10.48017/dj.v8i4.2624Keywords:
Ocimum basilicum L, Green and purple basil, Gas exchange, Drought stressAbstract
Drought stress is one of the most limiting factors in the productivity of crops. Salicylic acid (SA) is a plant hormone that plays an important role in response to environmental stresses, including water deprivation stress. Basil (Ocimum basilicum L.) is a water stress-sensitive plant and its cultivation can be strongly affected by prolonged periods of drought. Therefore, the objective of our work was to evaluate the possible attenuating role of AS in response to water stress in two basil cultivars. The experiment was conducted in the greenhouse of the Federal University of Agreste of Pernambuco. The experimental design was entirely randomized, with eight treatments: two varieties of basil (purple and green), two forms of AS application (with and without application), and two forms of irrigation (irrigated and without irrigation). The concentration of salicylic acid used was 2mM and its application was exogenous. As for the results, a reduction of 15.7% in the dry mass of the aboveground basil plants was observed when submitted to water deficit in irrigated plants. Significant differences were observed in the photosynthetic rate of the two basil varieties when exposed to AS. These results suggest that the use of AS at a concentration of 2mM contributed positively to the growth of both water-stressed and irrigated basil plants.
Metrics
References
ABBASI, T.; ABBASI, S.A. Biomass energy and the environmental impacts associated with its production and utilization.Renew. Sustain. Energy Rev.2010,14, 919–937. Disponível em: https://doi.org/10.1016/j.rser.2009.11.006
BRODERSEN, C.R.; RODDY, A.B.; WASON, J.W.; MCELRONE, A.J. Functional status of xylem through time. Annu. Rev. Plant Biol. 2019. Disponível em: https://doi.org/10.1146/annurev-arplant-050718-100455.
BORGES JÚNIOR, J. C. F.; ANJOS, R. T.; SILVA, T. J. A.; LIMA, J. R. S.; ANDRADE, C. L. T. Métodos de estimativa da evapotranspiração de referência diária para a microrregião de Garanhuns, PE. Revista Brasileira Engenharia Agrícola, v. 16, n. 4, p. 380-390, 2012. Disponível em: https://doi.org/10.1590/S1415-43662012000400008.
CARVALHO, J. S. B.; SILVA, J. P.R.; BATISTA, R. C. M. Uso de ácido salicílico como atenuador aos efeitos do déficit hídrico em plantas de manjericão. Diversitas Journal, v.5, n.3, p.1561-1574, 2020. Disponível em: https://doi.org/10.17648/diversitas-journal-v5i3-888.
CHEN, Z.L.; LI, X.M.; ZHANG, L.H. Effect of salicylic acid pretreatment on drought stress response of zoysiagrass (Zoysia japonica). Russ. J. Plant Physiol. 2014. Disponível em: https://link.springer.com/journal/11183.
DAMALAS, C. A. Improving Drought Tolerance in Sweet Basil (Ocimum Basilicum) with Salicylic Acid. Scientia Horticulturae. 2019. Disponível em: https://doi.org/10.1016/j.scienta.2018.11.005.
EMBRAPA. Estresse biótico e abiótico de plantas. Disponível em: . Acesso em: 25 out 2020.
FAVORITO, P. A; ECHER, M.M.2; OFFEMANN, L.C.1; SCHLINDWEIN, M.D.1; COLOMBARE, L.F.1; SCHINEIDER, R.P.1;
HAYAT, Q.; HAYAT, S. et. al.; Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense systemin Cicer arietinum L. Plant, Soil Environment. v. 58, n. 9, p. 417-423, 2010. Disponível em: https://doi.org/10.17221/232/2012-PSE.
HUSSEIN, M. M.; BALBAA, L. K.; GABALLAH, M. S. Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and Biological Sciences, v.3, n.4, p. 321-328, 2007.
KHAN, M. I. R.; FATMA, M.; PER, T. S.; ANJUM, N. A.; KHAN, N. A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, v.6, p.1-17, 2015. Disponível em: https://doi.org/10.3389/fpls.2015.00462.
KORDI, S.; SAIDI, M.; GHANBARI, F. Induction of drought tolerance in sweet basil (Ocimum basilicum L.) by salicylic acid. International Journal of Agricultural and Food Research, Vol. 2 No. 2, p. 18-26, 2013. Disponível em: http://dx.doi.org/10.24102/ijafr.v2i2.149.
MARENCO, R. A.; NASCIMENTO, H. C. S.; MAGALHÃES, N. S.; Stomatal conductance in Amazonian tree saplings in response to variations in the physical environment. Photosynthetica 52:493–500, 2014. Disponível em: https://doi.org/10.1007/s11099-014-0056-3.
MAY, A.; TANAKA, M.A.S.; SILVA, E.H.F.M.; PINHEIRO, M.Q. Ocorrência de cercosporiose em Ocimum basilicum L. Centro de horticultura Plantas Aromáticas e Medicinais. 2008. Disponível em: <http://www.iac.sp.gov.br/Tecnologias/Aromaticas.htm>. Acesso em: 11 mar. 2021.
MULUGETA, SINTAYEHU MUSIE, AND PÉTER RADÁCSI. Influence of Drought Stress on Growth and Essential Oil Yield of Ocimum Species. Horticulturae 8.2 .2022. Disponível em: https://doi.org/10.3390/horticulturae8020175.
NAJAFABADI M.Y., EHSANZADEH P. Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica. 2017. Disponível em: DOI: 10.1007/s11099-017-0673-8.
NAZAR R., UMAR S., KHAN N.A., SAREER O. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South Afr. J. Bot. 2015. Disponível em: https://doi.org/10.1016/j.sajb.2015.02.005.
PEREIRA, F.J.; DE CASTRO, E.M.; DE SOUZA, T.C, MAGALHÃES, P.C. Evolução da anatomia radicular do milho ‘Saracura’ em ciclos de seleção sucessivos. Pesquisa Agropecuária Brasileira, v43, n,12, o.649-1656, 2009. Disponível em: https://doi.org/10.1590/S0100-204X2008001200002.
PINHEIRO, C.; CHAVES, M. M. Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, v. 62, p. 869N –882, 2011. Disponível em: https://doi.org/10.1093/jxb/erq340
PACHECO, A. C.; CUSTÓDIO, C. C.; MACHADO NETO, N. B.; CARVALHO, P. R.; PEREIRA, D. N.; PACHECO, J. G. E. Germinação de sementes de camomila [Chamomilla recutita (L.) Rauschert] e calêndula (Calendula officinalis L.) tratadas com ácido salicílico. Revista brasileira de plantas medicinais, Botucatu, v. 9, n. 1, p.61-67, mar. 2007. Disponível em: https://www1.ibb.unesp.br/Home/Departamentos/Botanica/RBPM-RevistaBrasileiradePlantasMedicinais/artigo9_v9_n1.pdf
RIBEIRO M. F.; DONINI L. P.; SOUZA, J. A.; GUISSO A. P.; MOURA I. F.; BOBROWSKI V. L.; VIEGAS J. Influência de Diferentes Concentrações de Sais de MS e Açúcares 29 no Cultivo in vitro de Manjericão (Ocimum basilicum L.). Revista Brasileira de Biociências, Porto Alegre, v. 5, p. 57-59, 2007. Disponível em: http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/97.
SAHERI, F.; BARZIN, G.; PISHKAR, L.; AKBAR-BOOJAR, M.M.; BABAEEKHOU, L. Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia. 2020. Disponível em: https://doi.org/10.2478/s11756-020-00571-2.
SANKARI M., HRIDYA H., SNEHA P., DOSS C.G.P., CHRISTOPHER J.G., MATHEW J., ZAYED H., RAMAMOORTHY S. Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L. Funct. Integr. Genom. 2019. Disponível em: doi: 10.1007/s10142-019-00654-7.
SHI, Q.; BAO, Z.; ZHU, Z.; YING, Q.; QIAN, Q. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativaL. Journal of Plant Physiology, v. 52, n. 2, p. 793-800, 2005. Disponível em: https://doi.org/10.1007/s10725-005-5482-6
SILVA, V. M. da. O efeito do ácido salicílico em plantas de manjericão (Ocimum basilicum L.) sob estresse hídrico. 2018. Trabalho de Conclusão de Curso (Bacharelado em Agronomia) – Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns, 2018.
TAIZ, L.; ZEIGER, E.; MOLLER, I. M.; MURPHY, A. Fisiologia do desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed, 2017. 918p.
WANG Y.Y., WANG Y., LI G.Z., HAO L. Salicylic acid-altering Arabidopsis plant response to cadmium exposure: underlying mechanisms affecting antioxidation and photosynthesis-related processes. Ecotoxicol. Environ. Saf. 2019. Disponível em: https://doi.org/10.1016/j.ecoenv.2018.11.062.
ZAFAR, Z.; RASHEED, F.; ATIF, R.M.; JAVED, M.A.; MAQSOOD, M.; GAILING, O. Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L. and Populus deltoides L. saplings: Evidence from morphological, physiological, and biochemical changes. Plants. 2021. Disponível em: https://www.mdpi.com/2223-7747/10/6/1242#.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Josabete Salgueiro Bezerra de Carvalho, Micaelle Soares da Silva, Rita de Cássia Monteiro Batista, Toshik Iarley da Silva, Leonardo Zacarias Alves
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Diversitas Journal expresses that the articles are the sole responsibility of the Authors, who are familiar with Brazilian and international legislation.
Articles are peer-reviewed and care should be taken to warn of the possible incidence of plagiarism. However, plagiarism is an indisputable action by the authors.
The violation of copyright is a crime, provided for in article 184 of the Brazilian Penal Code: “Art. 184 Violating copyright and related rights: Penalty - detention, from 3 (three) months to 1 (one) year, or fine. § 1 If the violation consists of total or partial reproduction, for the purpose of direct or indirect profit, by any means or process, of intellectual work, interpretation, performance or phonogram, without the express authorization of the author, the performer, the producer , as the case may be, or whoever represents them: Penalty - imprisonment, from 2 (two) to 4 (four) years, and a fine. ”