Use of drones in forestry studies: a systematic review

Authors

  • Quétila Souza Barros Instituto Nacional de Pesquisas da Amazônia, Brasil https://orcid.org/0000-0001-7486-3384
  • Livia Rocha de Brito Universidade Federal do Acre, Campus Rio Branco, Brazil https://orcid.org/0009-0007-1577-4569
  • Henrique Pereira de Carvalho Universidade Federal do Acre, Campus Rio Branco, Brasil
  • Romário de Mesquita Pinheiro Instituto Nacional de Pesquisas da Amazônia, núcleo de pesquisas do Acre, Brasil https://orcid.org/0000-0003-0484-8351
  • Evandro José Linhares Ferreira Instituto Nacional de Pesquisas da Amazônia, núcleo de pesquisas do Acre, Brasil
  • Vitória Emily Penedo da Silva Universidade Federal do Acre, Campus Rio Branco, Brazil https://orcid.org/0009-0002-3679-6613

DOI:

https://doi.org/10.48017/dj.v9i3.2887

Keywords:

Remote sensing, unmanned aerial vehicles, forestry analyses

Abstract

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have gained prominence in the scientific field. This study aims to explore the historical trajectory of these devices, focusing on their specific applications in forestry studies. The research adopts a deductive exploratory methodology, utilizing literature review to examine forestry studies employing drones. Literature analysis prioritized recent research, employing keywords such as "remotely piloted technology in forestry studies." Using scientific databases, articles from 2015 to 2023 were identified, highlighting technological advancements, data collection methods, and challenges in drone application in forestry studies. Extracted information covered systems, use in forestry sciences, and advantages/disadvantages. The study revealed promising results in drone utilization for forestry studies. Applications encompass forest restoration monitoring, precise eucalyptus plantation assessment, cost-effective tree height measurement in coniferous forests, efficient estimation of fuels and forest structure, accurate comparison of altimetry models in sparsely vegetated areas, acai palm inventory surpassing naked-eye counting, efficiency in agricultural and forestry monitoring, mapping old beech forests through LiDAR surveys, and a wide range of practical applications for unmanned systems in forestry. Drone advantages include cost reduction, temporal flexibility, and execution in adverse conditions, while limitations involve flight time and sunlight dependence. Nevertheless, the study emphasizes their efficiency and promising contribution to forestry research.

Metrics

Metrics Loading ...

Author Biographies

Quétila Souza Barros, Instituto Nacional de Pesquisas da Amazônia, Brasil

0000-0001-7486-3384;  Instituto Nacional de Pesquisas da Amazônia-INPA, Núcleo de Pesquisa no Acre, Estrada Dias Martins, 3868, Rio Branco-AC, Brasil,  quetilabarros@gmail.com.

Livia Rocha de Brito, Universidade Federal do Acre, Campus Rio Branco, Brazil

0009-0007-1577-4569; Universidade Federal do Acre, Campus Rio Branco, BR-364, km 4, Rio Branco-AC, Brasil. livia.brito@sou.ufac.br

Henrique Pereira de Carvalho, Universidade Federal do Acre, Campus Rio Branco, Brasil

0009-0001-0241-6814; Universidade Federal do Acre, Campus Rio Branco, BR-364, km 4, Rio Branco-AC, Brasil, henrique.carvalho@sou.ufac.br.

Romário de Mesquita Pinheiro, Instituto Nacional de Pesquisas da Amazônia, núcleo de pesquisas do Acre, Brasil

0000-0003-0484-8351; Romário de Mesquita Pinheiro; Instituto Nacional de Pesquisas da Amazônia-INPA, Núcleo de Pesquisa no Acre,Estrada Dias Martins, 3868, Rio Branco-AC, Brasil, romario.ufacpz@hotmail.com.  

Evandro José Linhares Ferreira, Instituto Nacional de Pesquisas da Amazônia, núcleo de pesquisas do Acre, Brasil

0000-0001-9591-9615 ; Instituto Nacional de Pesquisas da Amazônia-INPA, Núcleo de Pesquisa no Acre,Estrada Dias Martins, 3868, Rio Branco-AC, Brasil,  evandroferreira@hotmail.com

Vitória Emily Penedo da Silva, Universidade Federal do Acre, Campus Rio Branco, Brazil

0009-0002-3679-6613; Universidade Federal do Acre, Campus Rio Branco, BR-364, km 4, Rio Branco-AC, Brasil,  vitoriapenedo99@gmail.com

References

Bagaram, M. B., Giuliani, D., Chirici, G., Giannetti, F., Bargati, S. (2018). UAV remote sensing for biodiversity monitoring: Are forest canopy gaps good covariates? Remote Sensing, 10(9), 1397.

Banu, T. P., Borlea, G. F., Banu, C. (2016). The use of drones in forestry. Journal of Environmental Science and Engineering B, 5(11), 557-562.

Basaran, B. K., Boon, H., Xuanhao, Z., Peter, Z., André, F., Feng, X., Brett, S., Fabian, W., Lachlan, O., Kovac, M. (2021). Forest Drones for Environmental Sensing and Nature Conservation. Aerial Robotic Systems Physically Interacting with the Environment.

Birdal, A. C., Avdan, U., Türk, T. (2017). Estimating tree heights with images from an unmanned aerial vehicle. Geomatics, Natural Hazards and Risk, 8(2), 1144-1156.

Brasil. (205). Instrução Suplementar nº 21/002 - ANAC - Agência Nacional de Aviação Civil.

Castro, A.; Ye.Y, S. J, Peña M.M. J. (2021). UAVs for Vegetation Monitoring: Overview and Recent Scientific Contributions. Remote Sensing, 13(11), 2139. doi:10.3390/RS13112139

Corona, E. P., Gonçalves, W. N., de Oliveira, F. de C., Campos, G. de S., de Oliveira, M. D. (2019). Detection of Vegetation Using Unmanned Aerial Vehicles Images: A Systematic Review.

Dale, R. (2018). UAV uses in Forestry.

Dena, M., Mehrdad, A., Yu, B., Haibo, F. (2022). Drones and Blockchain Integration to Manage Forest Fires in Remote Regions.

Dos Santos, C. A. N., Papa, D. A., Prado, L. S., Figueiredo, E. O.,Ferreira, E. J. L. (2021). Uso de drone para mapeamento de açaizeiros na Amazônia Ocidental. In Seminário da Embrapa Acre de Iniciação Científica e Pós-Graduação (3., 2020, Rio Branco, AC). Ciência e tecnologia na sociedade digital (edição on-line) (pp. 107-112). Rio Branco, AC: Embrapa Acre.

Fontes, J. C., Pozzetti, V. C. (2016). O uso dos veículos não tripulados no monitoramento ambiental na Amazônia. Revista de Direito e Sustentabilidade, 2(2), 149-164.

Gaboardi, C., & Lübeck, D. (2016). Precisão altimétrica de modelo digital do terreno sob a vegetação obtido por interferometria de radar de abertura sintética de banda P. Revista Brasileira de Geografia, 61(2), 67-81.

Getzin, S., Nuske, R. S., Wiegand, K. (2014). Using unmanned aerial vehicles (UAV) to quantify spatial gap patterns in forests. Remote Sensing, 6(8), 6988-7004.

Hidayat, V., Sumin, S., Kartowarigiran, B., Ayriza, Y. (2022). A Multidimensional Concept of Mental Workload: A Systematic Review.

Hung, M. N. W. B., Xu, Y., Hayashi, S., Ochi, S.,, Miyatake, M.,, Uchiyama, N. (2019). Levantamento com veículo aéreo não tripulado para geração de modelo digital do terreno em bacia experimental com vegetação florestal esparsa.

Longhitano, G. A. (2010). Vants para sensoriamento remoto: aplicabilidade na avaliação e monitoramento de impactos ambientais causados por acidentes com cargas perigosas. (Dissertação de mestrado, Escola Politécnica da Universidade de São Paulo, São Paulo).

Munaretto, L. (2015). VANT e drones: a aeronáutica ao alcance de todos. São José dos Campos: Edição independente.

Paneque-Galvez, J., McCall, M. K., Napolitano, B. M., Wich, S. A., & Koh, L. P. (2014). Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5, 1481–1507.

Prático, S., et al. (2022). Na Unpiloted Aerial System (UAV) Light Detection and Ranging (LiDAR) Based Approach to Delect Canopy Forest Structure Parameters in Old-Growthh Beech: PPreliminar Results. Lecture Notes in Computer Science, pp. 195-205.

Reis, B. P. (2017). Monitoramento de áreas de restauração florestal e geração de recomendações de manejo adaptativo através de imagens obtidas por VANT e LIDAR. (Dissertação de mestrado, Universidade Federal de Viçosa, Viçosa, MG).

Robiah, H. N., & Mohammad, F. (2022). Drone Aerial Image Identification of Tropical Forest Tree Species using the Mask R-CNN. International Journal of Innovative Computing.

Sgarbossa, N., Ibáñez, M. C., González, Cianciulli G. C., Bracchiglione, J., & Franco, J. V. A. (2022). Systematic reviews: Key concepts for health professionals. Medwave.

Shin, P., et al. (2018). Evaluating unmanned aerial vehicle images for estimating forest canopy fuels in a ponderosa pine stand. Remote Sensing, 10(8), 1-22.

Silva, C. A., et al. (2015). Avaliação da acurácia dos ortomosaicos e modelos digitais do terreno gerados pelo MVANT/DNPM. Revista Brasileira de Cartografia, 67/7, 1479-1495.

Sousa, H. L. de. (2017). Sensoriamento Remoto com VANTs: uma nova possibilidade para a aquisição de geoinformações. Brazilian Journal of Geomatics, 5(3), 326-342.

Sun, H., et al. (2023). UAV Platformes for Data Acquisition and Intervention Practices in Forestry: Towards More Intelligent Applications. Aerospace, 10(3), 317.

Tang, L., & Shao, G. (2015). Drone remote sensing for forestry research and practices. Journal of Forestry Research, 26(4), 791-797.

Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sensing, 4(6), 1671-1692.

Widodo, B., Edy, I., Jarot, S., Suroso, A., Chowanda, A., Ngarianto, H., Agung, A., & Santoso, G. (2021). Mapeamento e modelagem 3D utilizando drone quadrotor e software GIS. Revista de Big Data, 8(1), 436.

Yakut, A. D., & Akgul, S. (2023). A Systematic Literature Review: The Self-Concept of Students With Learning Disabilities. Learning Disability Quarterly.

Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69.

Zhang, J., Zhang, Z., Lutz, J. A., Chu, C., Hu, J., Shen, G., Li, B., Yang, Q., Lian, J., Zhang, M., Wang, X., Ye, W., & He, F. (2022). Drone-acquired data reveal the importance of forest canopy structure in predicting tree diversity. Forest Ecology and Management, 505, 119945.

Published

2024-07-10

How to Cite

Souza Barros, Q., Rocha de Brito, L., Pereira de Carvalho, H., de Mesquita Pinheiro, R., Linhares Ferreira, E. J., & Penedo da Silva, V. E. (2024). Use of drones in forestry studies: a systematic review. Diversitas Journal, 9(3). https://doi.org/10.48017/dj.v9i3.2887