Fusão de sensores aplicada à estimativa da intensidade luminosa (LUX) em aula prática
DOI:
https://doi.org/10.48017/dj.v8i2.2582Palabras clave:
instrumentação, modelagem matemática, dados quantitativos redundantesResumen
Nos últimos dez anos, o desenvolvimento de sensores com maior acurácia e precisão devido a melhorias nos processos fabris tem possibilitado ampliação do seu uso em diversas áreas. Contudo, o valor de aquisição, principalmente de produtos de fabricantes consagrados, frente as suas aplicações pode inviabilizar projetos mais simples. A técnica de fusão de dados de sensores apresenta-se como uma alternativa viável na resolução desta questão, pois modelos matemáticos podem ser propostos e usados em diversas situações. Esses modelos permitem melhorar os dados obtidos a fim de gerar informações confiáveis. Sendo assim, objetivo deste trabalho foi verificar o desempenho da regressão linear múltipla aplicada à fusão de dados quantitativos redundantes de sensores LDR 5mm na estimativa da intensidade luminosa (LUX) em cenários simulados. Para realização do experimento foram usados 3 sensores LDR (Light Dependent Resistor), 3 condicionadores de sinal LM393, 1 placa de aquisição de dados DAQ USB 6009 (14 bits), 1 luxímetro LT40 Extech, além do software LabView. Verificou-se que os sensores LDR A e B apresentaram maiores níveis de acurácia. Ainda, foi constatada significava melhora no nível de acurácia quando combinados os dados dos sensores A e B na forma de regressão linear múltipla.
Métricas
Citas
Anjos, J. H. P. (2017). Técnicas de fusão de sensores aplicadas à construção e melhoria de desempenho de sistemas de medição [Trabalho de conclusão de curso]. https://www2.dee.cefetmg.br/wp-content/uploads/sites/18/2017/11/TCC_2017_1_JHPAnjos.pdf
Filho, M. B. D. C., Souza, J. C. S., & Schilling, M. Th. (2007). Sobre o problema da integração generalizada de dados. In Sba: Controle & Automação Sociedade Brasileira de Automatica. https://www.scielo.br/j/ca/a/Zs7YpLgNq4T9MbSWFbm8BQz/?format=pdf&lang=pt
Li, J., Zhang, X., Zhou, Q., Chan, F. T. S., & Hu, Z. (2022). A feature-level multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. Journal of Manufacturing Processes, 84(84), 913–926. https://doi.org/10.1016/j.jmapro.2022.10.050
Li, T., Fan, H., García, J., & Corchado, J. M. (2019). Second-order statistics analysis and comparison between arithmetic and geometric average fusion: Application to multi-sensor target tracking. Information Fusion, 51(51), 233–243. https://doi.org/10.1016/j.inffus.2019.02.009
Neves, F. (2017, March 7). Introdução à Fusão de Sensores. Embarcados - Sua Fonte de Informações Sobre Sistemas Embarcados. https://www.embarcados.com.br/introducao-fusao-de-sensores-parte-1/
Akinwande, M. O., Hussaini, G. D., Shehu, U. G. Identifying the Limitation of Stepwise Selection for Variable Selection in Regression Analysis. American Journal of Theoretical and Applied Statistics. Vol. 4, No. 5, 2015, pp. 414-419. doi: 10.11648/j.ajtas.20150405.22
Papa, G., Repp, R., Meyer, F., Braca, P., & Hlawatsch, F. (2019). Distributed Bernoulli Filtering Using Likelihood Consensus. IEEE Transactions on Signal and Information Processing over Networks, 5(2), 218–233. https://doi.org/10.1109/tsipn.2018.2881718
Santana, B. A., Ushikoshi, T. D. A., Chagas, T. P., & Schnitman, L. (2018). Fusão de sensores aplicada à localização de robôs móveis utilizando sistema especialista Fuzzy. Anais Do Congresso Brasileiro de Automática, 1(2525-8311).
Santos, H. Á. (2020). Uma avaliação da contribuição da fusão de sensores de posicionamento relativo na precisão dos sistemas de localização de robôs móveis terrestres [Dissertação de Mestrado].
Serrone, G. D., Moretti, L. A stepwise regression to identify relevant variables affecting the environmental impacts of clinker production, Journal of Cleaner Production, Volume 398, 2023, https://doi.org/10.1016/j.jclepro.2023.136564.
Song, F., Wu, J., Liu, B., Jiang, J., Li, Z., Song, C., Li, J., & Jin, G. (2022). Intelligent green tea fixation with sensor fusion technology. Journal of Food Engineering, 317(317), 110846. https://doi.org/10.1016/j.jfoodeng.2021.110846
Sun, S., Lin, H., Ma, J., & Li, X. (2017). Multi-sensor distributed fusion estimation with applications in networked systems: A review paper. Information Fusion, 38(38), 122–134. https://doi.org/10.1016/j.inffus.2017.03.006
Taylor, C. N., & Bishop, A. N. (2019). Homogeneous functionals and Bayesian data fusion with unknown correlation. Information Fusion, 45(45), 179–189. https://doi.org/10.1016/j.inffus.2018.02.002
Yang, F., Shi, L., Liang, Y., & Zheng, L. (2022). Global state estimation under sequential measurement fusion for clustered sensor networks with cross-correlated measurement noises. Automatica, 142(142), 110392. https://doi.org/10.1016/j.automatica.2022.110392
M. Zhang, W. Wang. (2021). Weighted adaptive partition for heterogeneous IoT data stream. IEEE Internet of Things Journal, 8 (20). https://doi.org/ 10.1109/JIOT.2020.3045726
Zhang, K., Xia, T., Wang, D., Chen, G., Pan, E., Xi, L. (2023). Privacy-preserving and sensor-fused framework for prognostic & health management in leased manufacturing system, Mechanical Systems and Signal Processing, V. 184, 2023,
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Matheus Gabriel Acorsi, Thiago Lima da Silva, Jamile Raquel Regazzo, Rubens André Tabile, Murilo Mesquita Baesso, Leandro Maria Gimenez
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
O periodico Diversitas Journal expressa que os artigos são de unica responsabilidade dos Autores, conhecedores da legislação Brasileira e internacional. Os artigos são revisados pelos pares e devem ter o cuidado de avisar da possível incidencia de plagiarismo. Contudo o plagio é uma ação incontestavel dos autores. A Diversitas Journal não publicará artigos com indicios de Plagiarismos. Artigos com plagios serão tratados em conformidade com os procedimentos de plagiarismo COPE.
A violação dos direitos autorais constitui crime, previsto no artigo 184, do Código Penal Brasileiro:
“Art. 184 Violar direitos de autor e os que lhe são conexos: Pena – detenção, de 3 (três) meses a 1 (um) ano, ou multa. § 1o Se a violação consistir em reprodução total ou parcial, com intuito de lucro direto ou indireto, por qualquer meio ou processo, de obra intelectual, interpretação, execução ou fonograma, sem autorização expressa do autor, do artista intérprete ou executante, do produtor, conforme o caso, ou de quem os represente: Pena – reclusão, de 2 (dois) a 4 (quatro) anos, e multa.”