Brazilian endophytic fungi: biotechnological potential in evidence

Autores/as

  • Nicole Carneiro Coertjens Postgraduate Program in Natural Resources/PGRN at the State University of Mato Groso do Sul/UEMS, Brazil https://orcid.org/0000-0002-5259-6059
  • Maria do Socorro Mascarenhas Universidade Estadual de Mato Groso do Sul/UEMS, Dourados, Mato Grosso do Sul (MS), Brazil https://orcid.org/0000-0002-5343-4502
  • Margareth Batistote Programa de Pos-Graduação em Recursos Naturais/PGRN at the Universidade Estadual de Mato Groso do Sul/UEMS, Brazil

DOI:

https://doi.org/10.48017/dj.v9i3.2840

Palabras clave:

Biomes., Biological activity., Biodiversity., Pharmacological Properties.

Resumen

Plants play a key role in the ecosystem, especially in interactions with other living beings, including endophytic fungi. These fungi have a remarkable ability to produce bioactive compounds that resemble those present in their host plants. In this context, this study aims to present an overview of research carried out in Brazil on the biotechnological potential of endophytic fungi isolated from plants present in different Brazilian biomes. To achieve this goal, exploratory research was conducted in online databases and in open access published articles. The results indicate a concentration of investigations on prospecting endophytic fungi with metabolic potential in the Cerrado, Caatinga and Pantanal biomes. These endophytic fungi have a vast potential for the production of biomolecules with diverse applications in biotechnological processes. Some of these fungi have the ability to produce metabolites with varied biological activities, including pharmacological properties, such as antitumor and antibiotics. However, it is important to note that these fungi are still poorly studied, and may be explored in relation to their potential for producing biomolecules.

Métricas

Cargando métricas ...

Biografía del autor/a

Nicole Carneiro Coertjens, Postgraduate Program in Natural Resources/PGRN at the State University of Mato Groso do Sul/UEMS, Brazil

0000-0002-5259-6059; Universidade Estadual de Mato Groso do Sul/UEMS, Dourados, Mato Grosso do Sul (MS), Brazil. nicoleccoertjens@outlook.com

Maria do Socorro Mascarenhas, Universidade Estadual de Mato Groso do Sul/UEMS, Dourados, Mato Grosso do Sul (MS), Brazil

0000-0002-5343-4502; Universidade Estadual de Mato Groso do Sul/UEMS, Dourados, Mato Grosso do Sul (MS), Brazil. maria_mascarenhas@outlook.com

Margareth Batistote, Programa de Pos-Graduação em Recursos Naturais/PGRN at the Universidade Estadual de Mato Groso do Sul/UEMS, Brazil

0000-0002-5343-4502; Universidade Estadual de Mato Groso do Sul/UEMS, Dourados, Mato Grosso do Sul (MS), Brazil. maria_mascarenhas@outlook.com

Citas

Abu Taher, M., Tong, W. Y., Leong, C. R., Ab Rashid, S., & Tan, W. N. (2023). General Characteristics of Endophytes and Bioprospecting Potential of Endophytic Fungi. Advancements in Materials Science and Technology Led by Women, 35-49. https://doi.org/10.1007/978-3-031-21959-7_4

Al Husnain, L., Alajlan, L., AlKahtani, M. D., & Ameen, F. (2023). Avicennia marina endophytic fungi shows antagonism against tomato pathogenic fungi. Journal of the Saudi Society of Agricultural Sciences, 22(4), 214-222. https://doi.org/10.1016/j.jssas.2022.12.001

Alves, D. R., da Silva, W. M. B., dos Santos, D. L., de Oliveira Freire, F. D. C., Vasconcelos, F. R., & de Morais, S. M. (2020). Atividades antioxidante, anticolinesterásica e citotóxica de metabólitos de fungos endofíticos. Brazilian Journal of Development, 6(9), 73684-73691. https://doi.org/10.34117/bjdv6n9-721

Andrioli, W. J., Simão, T. L. B. V., Ferreira, D. P., Araújo, M. H., Calixto, S. D., Bastos, J. K., ... & Muzitano, M. F. (2022). Antimycobacterial and anti-inflammatory activities of metabolites from endophytic and soil fungi. Phytomedicine Plus, 2(3), 100312. https://doi.org/10.1016/j.phyplu.2022.100312

Barbosa, R. D. N., Bezerra, J. D. P., Santos, A. C. D. S., Melo, R. F. R., Houbraken, J., Oliveira, N. T., & Souza-Motta, C. M. D. (2020). Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. nov. Acta Botanica Brasilica, 34, 409-429. https://doi.org/10.1590/0102-33062019abb0411

Baron, N. C., & Rigobelo, E. C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 13(1), 39-55. https://doi.org/10.1080/21501203.2021.1945699

Bolívar-Anillo, H. J., Garrido, C., & Collado, I. G. (2020). Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews, 19, 721-740. https://doi.org/10.1007/s11101-019-09603-5

Calixto, J. B. (2019). The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciências, 91. https://doi.org/10.1590/0001-3765201920190105

Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518. https://doi.org/10.1016/j.bcab.2020.101518

Cheng, Y., Liu, G., Li, Z., Zhou, Y., & Gao, N. (2022). Screening saikosaponin d (SSd)-producing endophytic fungi from Bupleurum scorzonerifolium Willd. World Journal of Microbiology and Biotechnology, 38(12), 242. https://doi.org/10.21203/rs.3.rs-1822474/v1

Custodio, V., Gonin, M., Stabl, G., Bakhoum, N., Oliveira, M. M., Gutjahr, C., & Castrillo, G. (2022). Sculpting the soil microbiota. The Plant Journal, 109(3), 508-522. https://doi.org/10.1111/tpj.15568

Dalmagro, H. J., De Souza, P. J., Engelbrehct, M. M., de Arruda, P. H., Sallo, F. D. S., Vourlitis, G. L., ... & Couto, E. G. (2022). Net carbon dioxide exchange in a hyperseasonal cattle pasture in the northern Pantanal wetland of Brazil. Agricultural and Forest Meteorology, 324, 109099. https://doi.org/10.1016/j.agrformet.2022.109099

Dantas, S. B. S., Alves, F. A. M., & Chapla, V. M. (2021). Chemical, diversity and biotechnological potential of endophytic fungi isolated from Brazilian Cerrado plants. Biota Neotropica, 21, e20201069. https://doi.org/10.1590/1676-0611-BN-2020-1069

De Andrade Vieira, É., Coêlho, J. G. S., Grisi, C. V. B., dos Santos, B. S., da Silva Júnior, J. C., Alcântara, M. A., ... & de Magalhães Cordeiro, A. M. T. (2022). Correlation and influence of antioxidant compounds of peels and pulps of different species of cacti from Brazilian Caatinga biome using principal component analysis. South African Journal of Botany, 147, 434-442. https://doi.org/10.1016/j.sajb.2022.02.005

De Lima, R. A., Oliveira, A. A., Pitta, G. R., de Gasper, A. L., Vibrans, A. C., Chave, J., ... & Prado, P. I. (2020). The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature communications, 11(1), 6347. https://doi.org/10.1038/s41467-020-20217-w

De Oliveira Amaral, A., e Ferreira, A. F. T. A. F., & da Silva Bentes, J. L. (2022). Fungal endophytic community associated with Hevea spp.: diversity, enzymatic activity, and biocontrol potential. Brazilian Journal of Microbiology, 53(2), 857-872. https://doi.org/10.1007/s42770-022-00709-1

De Oliveira Santana, J. C., & Simon, M. F. (2022). Plant diversity conservation in an agricultural frontier in the Brazilian Cerrado. Biodiversity and Conservation, 31(2), 667-681. https://doi.org/10.1007/s10531-022-02356-2

De Oliveira, D. M., Pereira, C. B., Mendes, G., Junker, J., Kolloff, M., Rosa, L. H., ... & Cota, B. B. (2018). Two new usnic acid derivatives from the endophytic fungus Mycosphaerella sp. Zeitschrift für Naturforschung C, 73(11-12), 449-455. https://doi.org/10.1515/znc-2017-0162

De Paula, L. F., Azevedo, L. O., Mauad, L. P., Cardoso, L. J. T., Braga, J. M. A., Kollmann, L. J., ... & Forzza, R. C. (2020). Sugarloaf Land in south-eastern Brazil: a tropical hotspot of lowland inselberg plant diversity. Biodiversity Data Journal, 8. https://doi.org/10.3897/BDJ.8.e53135

Do Nascimento Magalhães, K., Guarniz, W. A. S., Sá, K. M., Freire, A. B., Monteiro, M. P., Nojosa, R. T., ... & Bandeira, M. A. M. (2019). Medicinal plants of the Caatinga, northeastern Brazil: Ethnopharmacopeia (1980–1990) of the late professor Francisco José de Abreu Matos. Journal of ethnopharmacology, 237, 314-353. https://doi.org/10.1016/j.jep.2019.03.032

Fenibo, E. O., Ijoma, G. N., & Matambo, T. (2021). Biopesticides in sustainable agriculture: A critical sustainable development driver governed by green chemistry principles. Frontiers in Sustainable Food Systems, 5, 619058. https://doi.org/10.3389/fsufs.2021.619058

Fernandes, G. W., Oki, Y., Belmiro, M. S., Resende, F. M., Corrêa Junior, A., & de Azevedo, J. L. (2018). Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod-Plant Interactions, 12, 329-337. https://doi.org/10.1007/s11829-018-9597-x

Fernandes, M. F., Cardoso, D., & de Queiroz, L. P. (2020). An updated plant checklist of the Brazilian Caatinga seasonally dry forests and woodlands reveals high species richness and endemism. Journal of Arid environments, 174, 104079. https://doi.org/10.1016/j.jaridenv.2019.104079

Ferreira, G. W., & Reboita, M. S. (2022). A new look into the South America precipitation regimes: Observation and Forecast. Atmosphere, 13(6), 873. https://doi.org/10.3390/atmos13060873

Gonçalves, S., & Romano, A. (2018). Production of plant secondary metabolites by using biotechnological tools. Secondary metabolites-sources and applications, 5, 81-99. https://doi.org/ 10.5772/intechopen.76414

Gupta, S., Chaturvedi, P., Kulkarni, M. G., & Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances, 39, 107462. https://doi.org/10.1016/j.biotechadv.2019.107462

Hashem, A. H., Attia, M. S., Kandil, E. K., Fawzi, M. M., Abdelrahman, A. S., Khader, M. S., ... & Abdelaziz, A. M. (2023). Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microbial Cell Factories, 22(1), 1-23. https://doi.org/10.1186/s12934-023-02118-x

Hassane, A. M., Taha, T. M., Awad, M. F., Mohamed, H., & Melebari, M. (2022). Radical scavenging potency, HPLC profiling and phylogenetic analysis of endophytic fungi isolated from selected medicinal plants of Saudi Arabia. Electronic Journal of Biotechnology, 58, 37-45. https://doi.org/10.1016/j.ejbt.2022.05.001

Júnior, D. P. L., Dantas, E. S. D. O., Souza, R. D., Souza, M. H. D., Ramos, L. H. D., Sehn, M., ... & Silva, A. M. A. (2021). Burning Season: Challenges to Conserve Biodiversity and the Critical Points of a Planet Threatened by the Danger Called Global Warming. International Journal of Environment and Climate Change, 11(5), 60-90.

Kuila, D., & Ghosh, S. (2022). Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Current Research in Microbial Sciences, 3, 100107. https://doi.org/10.1016/j.crmicr.2022.100107

Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K., & Singhania, R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 323, 124566. https://doi.org/10.1016/j.biortech.2020.124566

Kuriakose, G. C., Arathi, B. P., Divya Lakshmanan, M., Jiby, M. V., Gudde, R. S., & Jayabhaskaran, C. (2020). Sub-acute toxicity assessment of taxol isolated from Fusarium solani, an endophytic fungus of Taxus brevifolia, in wistar rats and analyzing its cytotoxicity and apoptotic potential in lung cancer cells. Frontiers in Oncology, 10, 538865. https://doi.org/10.3389/fonc.2020.538865

Leite, P. M., Camargos, L. M., & Castilho, R. O. (2021). Recent progess in phytotherapy: A Brazilian perspective. European Journal of Integrative Medicine, 41, 101270. https://doi.org/10.1016/j.eujim.2020.101270

Liu, R., Yang, L., Zou, Y., & Wu, Q. (2023). Root-associated endophytic fungi modulate endogenous auxin and cytokinin levels to improve plant biomass and root morphology of trifoliate orange. Horticultural Plant Journal, 9(3), 463-472. https://doi.org/10.1016/j.hpj.2022.08.009

Losi, A., & Gaertner, W. (2021). A light life together: photosensing in the plant microbiota. Photochemical & Photobiological Sciences, 20(3), 451-473. https://doi.org/10.1007/s43630-021-00029-7

Magnusson, W. E., Grelle, C. E., Marques, M. C., Rocha, C. F., Dias, B., Fontana, C. S., ... & Fernandes, G. W. (2018). Effects of Brazil's political crisis on the science needed for biodiversity conservation. Frontiers in Ecology and Evolution, 6, 163. https://doi.org/10.3389/fevo.2018.00163

Maksic, J., Venancio, I. M., Shimizu, M. H., Chiessi, C. M., Piacsek, P., Sampaio, G., ... & Alexandre, F. F. (2022). Brazilian biomes distribution: Past and future. Palaeogeography, Palaeoclimatology, Palaeoecology, 585, 110717. https://doi.org/10.1016/j.palaeo.2021.110717

Manhães, A. P., Loyola, R., Mazzochini, G. G., Ganade, G., Oliveira-Filho, A. T., & Carvalho, A. R. (2018). Low-cost strategies for protecting ecosystem services and biodiversity. Biological Conservation, 217, 187-194. https://doi.org/10.1016/j.biocon.2017.11.009

Marinho, F., Oehl, F., da Silva, I. R., Coyne, D., da Nobrega Veras, J. S., & Maia, L. C. (2019). High diversity of arbuscular mycorrhizal fungi in natural and anthropized sites of a Brazilian tropical dry forest (Caatinga). Fungal Ecology, 40, 82-91. https://doi.org/10.1016/j.funeco.2018.11.014

Martinelli, L. A., Nardoto, G. B., Soltangheisi, A., Reis, C. R. G., Abdalla-Filho, A. L., Camargo, P. B. D., ... & Vieira, S. A. (2021). Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry, 154, 405-423. https://doi.org/10.1007/s10533-020-00714-2

Martins da Costa, E., Almeida Ribeiro, P. R., Soares de Carvalho, T., Pereira Vicentin, R., Balsanelli, E., Maltempi de Souza, E., ... & de Souza Moreira, F. M. (2020). Efficient nitrogen-fixing bacteria isolated from soybean nodules in the semi-arid region of Northeast Brazil are classified as Bradyrhizobium brasilense (Symbiovar sojae). Current Microbiology, 77(8), 1746-1755. https://doi.org/10.1007/s00284-020-01993-6

Pacheco-Tapia, R., Vásquez-Ocmín, P., Duthen, S., Ortiz, S., Jargeat, P., Amasifuen, C., ... & Vansteelandt, M. (2022). Chemical modulation of the metabolism of an endophytic fungal strain of Cophinforma mamane using epigenetic modifiers and amino-acids. Fungal Biology, 126(5), 385-394. https://doi.org/10.1016/j.funbio.2022.02.005

Palmatier, R. W., Houston, M. B., & Hulland, J. (2018). Review articles: purpose, process, and structure. Journal of the Academy of Marketing Science, 46, 1-5. https://doi.org/10.1007/s11747-017-0563-4

Raimi, A., & Adeleke, R. (2021). Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Archives of Microbiology, 203(5), 1917-1942. https://doi.org/10.1007/s00203-021-02256-z

Rutkowska, N., Drożdżyński, P., Ryngajłło, M., & Marchut-Mikołajczyk, O. (2023). Plants as the Extended Phenotype of Endophytes—The Actual Source of Bioactive Compounds. International Journal of Molecular Sciences, 24(12), 10096. https://doi.org/10.3390/ijms241210096

Sharma, G., Agarwal, S., Verma, K., Bhardwaj, R., & Mathur, V. (2023). Therapeutic compounds from medicinal plant endophytes: molecular and metabolic adaptations. Journal of Applied Microbiology, lxad074. https://doi.org/10.1093/jambio/lxad074

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039

Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/plants9081011

Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18(11), 607-621. https://doi.org/10.1038/s41579-020-0412-1

Uroz, S., Courty, P. E., & Oger, P. (2019). Plant symbionts are engineers of the plant-associated microbiome. Trends in plant science, 24(10), 905-916. https://doi.org/10.1016/j.tplants.2019.06.008

Valli, M., Russo, H. M., & Bolzani, V. S. (2018). The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. Anais da Academia Brasileira de Ciências, 90, 763-778. https://doi.org/10.1590/0001-3765201820170653

Valli, M., & Bolzani, V. S. (2019). Natural products: perspectives and challenges for use of Brazilian plant species in the bioeconomy. Anais da Academia Brasileira de Ciências, 91. https://doi.org/10.1590/0001-3765201920190208

Vasundhara, M., Reddy, M. S., & Kumar, A. (2019). Secondary metabolites from endophytic fungi and their biological activities. New and future developments in microbial biotechnology and bioengineering, 237-258. https://doi.org/10.1016/B978-0-444-63504-4.00018-9

Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review. Journal Of Planning Education And Research, 39(1), 93-112. https://doi.org/10.1177/0739456X17723971

Descargas

Publicado

2024-07-20

Cómo citar

Coertjens, N. C., Mascarenhas, M. do S., & Batistote, M. (2024). Brazilian endophytic fungi: biotechnological potential in evidence . Diversitas Journal, 9(3). https://doi.org/10.48017/dj.v9i3.2840