Transformação do Mercado de Eletricidade na Era das Energias Renováveis: Uma Revisão Sistemática

Autores

  • Chunni Dai Lyceum University of the Philippines, Manila, Philippines

DOI:

https://doi.org/10.48017/dj.v10ispecial_1.3381

Palavras-chave:

Integração de energia renovável, estabilidade do mercado de eletricidade, Preço voluntario

Resumo

A integração de fontes de energia renováveis ​​nos mercados de eletricidade apresenta oportunidades e desafios, influenciando a estabilidade do mercado e a dinâmica de preços. Enquanto a energia renovável reduz os preços de eletricidade no atacado por meio do efeito de ordem de mérito, sua intermitência contribui para a volatilidade dos preços, exigindo estratégias avançadas de hedge e análise preditiva. Esta revisão sistemática examina o impacto da integração de energia renovável na estabilidade do mercado e nos preços, com foco em mecanismos como flutuações de preços, instrumentos de hedge, gestão do lado da demanda e estruturas regulatórias. O estudo segue a metodologia PRISMA, utilizando artigos de periódicos indexados pela SCOPUS publicados entre 2015 e 2025 para garantir o rigor acadêmico. As descobertas revelam que o aumento da penetração renovável reduz os preços da eletricidade, mas amplifica a volatilidade dos preços, necessitando de instrumentos financeiros aprimorados, como contratos a termo, mercados de capacidade e derivativos renováveis. Os ajustes de poder de mercado por empresas de energia dominantes em resposta ao crescimento renovável influenciam a competitividade geral, enquanto os mercados de energia descentralizados, a otimização de microrredes e o comércio de eletricidade ponto a ponto aumentam a resiliência do mercado. Além disso, o comércio transfronteiriço de eletricidade continua sendo um fator pouco explorado, mas crítico, no equilíbrio de descompassos entre oferta e demanda. As estruturas regulatórias desempenham um papel vital na mitigação da instabilidade, com mecanismos como tarifas feed-in, leilões renováveis ​​e precificação de carbono influenciando o investimento e a estabilidade do mercado. No entanto, o desalinhamento entre subsídios renováveis ​​e estratégias de precificação de carbono pode criar distorções de mercado não intencionais. O estudo destaca a necessidade de modelos de previsão baseados em IA para melhorar a previsibilidade de preços e exige análises longitudinais para avaliar a dinâmica de custo-benefício em evolução da adoção de energia descentralizada. Esta revisão fornece insights valiosos para formuladores de políticas, reguladores de energia e participantes do mercado, oferecendo uma síntese abrangente dos desafios financeiros e operacionais associados à integração de energia renovável. As descobertas contribuem para o desenvolvimento de estruturas de mercado resilientes e adaptáveis ​​que apoiam a transição para um sistema de energia sustentável e economicamente viável.

Métricas

Carregando Métricas ...

Biografia do Autor

Chunni Dai, Lyceum University of the Philippines, Manila, Philippines

0009-0009-9062-6974; Lyceum University of the Philippines, Manila Campus, Philippines. 35812625@qq.com

Referências

Abate, A. G., Riccardi, R., & Ruiz, C. (2022). Contract design in electricity markets with high penetration of renewables: A two-stage approach. Omega, 111, 102666. https://doi.org/10.1016/j.omega.2022.102666

Alsaedi, Y., Tularam, G. A., & Wong, V. (2020). Impact of solar and wind prices on the integrated global electricity spot and options markets: a time series analysis. International Journal of Energy Economics and Policy, 10(2), 337–353. https://doi.org/10.32479/ijeep.8939

Alsaedi, Y., Tularam, G. A., & Wong, V. (2020). Impact of the nature of energy management and responses to policies regarding solar and wind pricing: a qualitative study of the australian electricity markets. International Journal of Energy Economics and Policy, 11(3), 191–205. https://doi.org/10.32479/ijeep.10991

Alsaedi, Y., Tularam, G. A., & Wong, V. (2021). Assessing the effects of solar and wind prices on the Australia electricity spot and options markets using a vector autoregression analysis. International Journal of Energy Economics and Policy, 10(1), 120–133. https://doi.org/10.32479/ijeep.8567

Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020a). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/qss_a_00019

Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020b). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/qss_a_00019

Ballester, C., & Furió, D. (2024). Analysing the impact of renewables on Iberian wholesale electricity market prices using machine learning techniques. Green Finance, 6(2), 363–382. https://doi.org/10.3934/gf.2024014

Bojnec, Š. (2023). Electricity markets, electricity prices and green energy transition. Energies, 16(2), 873. https://doi.org/10.3390/en16020873

Böttger, D., & Härtel, P. (2021). On wholesale electricity prices and market values in a carbon-neutral energy system. Energy Economics, 106, 105709. https://doi.org/10.1016/j.eneco.2021.105709

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Browne, O., Poletti, S., & Young, D. (2015). How does market power affect the impact of large scale wind investment in “energy only” wholesale electricity markets? Energy Policy, 87, 17–27. https://doi.org/10.1016/j.enpol.2015.08.030

Casalicchio, V., Manzolini, G., Prina, M. G., & Moser, D. (2022). From investment optimization to fair benefit distribution in renewable energy community modelling. Applied Energy, 310, 118447. https://doi.org/10.1016/j.apenergy.2021.118447

Cludius, J., Hermann, H., Matthes, F. C., & Graichen, V. (2014). The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications. Energy Economics, 44, 302–313. https://doi.org/10.1016/j.eneco.2014.04.020

Cramton, P. (2017). Electricity market design. Oxford Review of Economic Policy, 33(4), 589–612. https://doi.org/10.1093/oxrep/grx041

Cruz, I., Ilić, D. D., & Johansson, M. T. (2023). Using flexible energy system interactions amongst industry, district heating, and the power sector to increase renewable energy penetration. Energy Efficiency, 16(6). https://doi.org/10.1007/s12053-023-10134-4

Espinosa, M. P., & Pizarro-Irizar, C. (2018). Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market. Renewable and Sustainable Energy Reviews, 94, 902–914. https://doi.org/10.1016/j.rser.2018.06.065

Fan, S., & Hyndman, R. J. (2011). The price elasticity of electricity demand in South Australia. Energy Policy, 39(6), 3709–3719. https://doi.org/10.1016/j.enpol.2011.03.080

Frondel, M., Kaeding, M., & Sommer, S. (2022). Market premia for renewables in Germany: The effect on electricity prices. Energy Economics, 109, 105874. https://doi.org/10.1016/j.eneco.2022.105874

Gicevskis, K., Linkevics, O., & Karlsons, K. (2023). Transitioning to decentralized renewable energy in Latvia: A comprehensive payback analysis. Latvian Journal of Physics and Technical Sciences, 60(6), 19–34. https://doi.org/10.2478/lpts-2023-0034

Gokce, B., Kaya, G., Kayalica, M. O., & Kayakutlu, G. (2024). Impact of renewable energy resources on the Turkish power market. International Journal of Energy Economics and Policy, 14(4), 294–304. https://doi.org/10.32479/ijeep.16204

Halužan, M., Verbič, M., & Zorić, J. (2023). The crowding out of conventional electricity generation by renewable energy sources: implications from Greek, Hungarian, and Romanian electricity markets. Environmental Science and Pollution Research, 30(57), 120063–120084. https://doi.org/10.1007/s11356-023-30564-y

Houben, N., Cosic, A., Stadler, M., Mansoor, M., Zellinger, M., Auer, H., Ajanovic, A., & Haas, R. (2023). Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria. Applied Energy, 337, 120913. https://doi.org/10.1016/j.apenergy.2023.120913

Huang, W., & Li, H. (2022). Game theory applications in the electricity market and renewable energy trading: A critical survey. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.1009217

Imani, M. H., Bompard, E., Colella, P., & Huang, T. (2021). Impact of wind and solar generation on the Italian zonal electricity price. Energies, 14(18), 5858. https://doi.org/10.3390/en14185858

Kaplun, V., Osypenko, V., & Makarevych, S. (2022). Forecasting the electricity pricing of energy islands with renewable sources. Naukovij Žurnal «Tehnìka Ta Energetika», 13(4). https://doi.org/10.31548/machenergy.13(4).2022.38-47

Katz, J., Andersen, F. M., & Morthorst, P. E. (2016). Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system. Energy, 115, 1602–1616. https://doi.org/10.1016/j.energy.2016.07.084

Khalaf, A. F., & Wang, Y. (2018). Energy-cost-aware flow shop scheduling considering intermittent renewables, energy storage, and real-time electricity pricing. International Journal of Energy Research, 42(12), 3928–3942. https://doi.org/10.1002/er.4130

Koronen, C., Åhman, M., & Nilsson, L. J. (2020). Data centres in future European energy systems—energy efficiency, integration and policy. Energy Efficiency, 13(1), 129–144. https://doi.org/10.1007/s12053-019-09833-8

Liebensteiner, M., Ocker, F., & Abuzayed, A. (2025). High electricity price despite expansion in renewables: How market trends shape Germany’s power market in the coming years. Energy Policy, 198, 114448. https://doi.org/10.1016/j.enpol.2024.114448

Macedo, D. P., Marques, A. C., & Damette, O. (2022). The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain. Economic Analysis and Policy, 76, 885–900. https://doi.org/10.1016/j.eap.2022.10.001

Madler, J., Harding, S., & Weibelzahl, M. (2023). A multi-agent model of urban microgrids: Assessing the effects of energy-market shocks using real-world data. Applied Energy, 343, 121180. https://doi.org/10.1016/j.apenergy.2023.121180

Maqbool, A. S., Baetens, J., Lotfi, S., Vandevelde, L., & Van Eetvelde, G. (2019). Assessing financial and flexibility incentives for integrating wind energy in the grid via Agent-Based modeling. Energies, 12(22), 4314. https://doi.org/10.3390/en12224314

Meneguzzo, F., Ciriminna, R., Albanese, L., & Pagliaro, M. (2016). The remarkable impact of renewable energy generation in Sicily onto electricity price formation in Italy. Energy Science & Engineering, 4(3), 194–204. https://doi.org/10.1002/ese3.119

Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213-228. https://doi.org/10.1007/s11192-015-1765-5

Owolabi, O. O., Schafer, T. L. J., Smits, G. E., Sengupta, S., Ryan, S. E., Wang, L., Matteson, D. S., Sherman, M. G., & Sunter, D. A. (2023). Role of Variable Renewable Energy Penetration on Electricity Price and its Volatility across Independent System Operators in the United States. Data Science in Science, 2(1). https://doi.org/10.1080/26941899.2022.2158145

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71

Peura, H., & Bunn, D. W. (2021). Renewable power and electricity prices: The impact of forward Markets. Management Science, 67(8), 4772–4788. https://doi.org/10.1287/mnsc.2020.3710

Rai, A., & Nunn, O. (2020). On the impact of increasing penetration of variable renewables on electricity spot price extremes in Australia. Economic Analysis and Policy, 67, 67–86. https://doi.org/10.1016/j.eap.2020.06.001

Richstein, J. C., Chappin, É. J., & De Vries, L. J. (2015). Adjusting the CO 2 cap to subsidised RES generation: Can CO 2 prices be decoupled from renewable policy? Applied Energy, 156, 693–702. https://doi.org/10.1016/j.apenergy.2015.07.024

Ríos‐Ocampo, J. P., Arango‐Aramburo, S., & Larsen, E. R. (2021). Renewable energy penetration and energy security in electricity markets. International Journal of Energy Research, 45(12), 17767–17783. https://doi.org/10.1002/er.6897

Ritz, R. A. (2016). How does renewables competition affect forward contracting in electricity markets? Economics Letters, 146, 135–139. https://doi.org/10.1016/j.econlet.2016.07.024

Sabour, K. M., Toub, M., & Aniba, G. (2021). Renewable Electricity Real-Time Pricing: Enhancing grid’s stability through demand side management. 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), 1–5. https://doi.org/10.1109/isgtasia49270.2021.9715676

Sakaguchi, M., & Fujii, H. (2021). The impact of variable renewable energy penetration on wholesale electricity prices in Japan between FY 2016 and 2019. Frontiers in Sustainability, 2. https://doi.org/10.3389/frsus.2021.770045

Sensfuß, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086–3094. https://doi.org/10.1016/j.enpol.2008.03.035

Sheha, M., Mohammadi, K., & Powell, K. (2021). Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage. Applied Energy, 282, 116168. https://doi.org/10.1016/j.apenergy.2020.116168

Solaymani, S. (2024). Energy security and its determinants in New Zealand. Environmental Science and Pollution Research, 31(39), 51521–51539. https://doi.org/10.1007/s11356-024-34611-0

Sovacool, B. K., Axsen, J., & Sorrell, S. (2018). Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Research & Social Science, 45, 12–42. https://doi.org/10.1016/j.erss.2018.07.007

Tolmasquim, M. T., De Barros Correia, T., Porto, N. A., & Kruger, W. (2021). Electricity market design and renewable energy auctions: The case of Brazil. Energy Policy, 158, 112558. https://doi.org/10.1016/j.enpol.2021.112558

Zhao, D., Botterud, A., & Ilic, M. (2023). Uniform Pricing vs Pay as Bid in 100%-Renewables Electricity Markets: A Game-theoretical Analysis. ACM Digital Library, 236–241. https://doi.org/10.1145/3575813.3595201

Downloads

Publicado

2025-05-01

Como Citar

Dai, C. (2025). Transformação do Mercado de Eletricidade na Era das Energias Renováveis: Uma Revisão Sistemática. Diversitas Journal, 10(special_1). https://doi.org/10.48017/dj.v10ispecial_1.3381