Model vertical gardens as atmospheric quality bioindicator in urban area in Maceió –Alagoas -Brazil

Authors

DOI:

https://doi.org/10.17648/diversitas-journal-v6i1-1048

Keywords:

Ecological Indicators, Air Pollutants, Heavy Metals

Abstract

The construction of vertical gardens and the study involving species of insects and plants biomonitoring technique a relatively new topic in the environmental sciences. Thus, the objective of this article was to carry out active biomonitoring of air quality using plant and insect species in a vertical suspended garden system. For this, five bioindicator plants were used: T. pallida, T. zebrina, J. brandejeana, L. Câmara, and R. nasturtium aquaticum. Growth measures were taken; quantification and characterization of stomata; determination of visiting insect orders and determination of heavy metal concentrations. The results indicated that the stomata of the bioindicator plant species R. nasturtium aquaticum presented stomata in both epidermises, but preferably in greater numbers on the adaxial surface regardless of the place of cultivation, differently from other species, which due to the species itself or due to plasticity, presented higher amounts of stomata on the abaxial surface, justifying protection for the gas capture system of atmospheric pollutants so that photosynthetic rates can occur normally. It is possible to conclude that the plants used in this study showed adaptations and are bioindication sources of environmental pollution. As for the visiting insects, the orders identified showed variations in the concentrations of heavy metals, however, specific Brazilian pollution indexes in invertebrates do not yet exist, therefore, in this research, comparisons were made with other studies related to the country.

Metrics

Metrics Loading ...

Author Biographies

Morgana Andreia Medeiros Tenório, Centro Universitário Cesmac

0000-0002-9217-8337; Discente do Programa de Pós-Graduação Análise de Sistemas Ambientais -PPGASA, Centro Universitário Cesmac, campusIV, Brasil, E-mail: morgana.tenorio@cesmac.edu.b

Thiago José Matos Rocha, Centro Universitário Cesmac

0000-0001-5153-6583; Docente do Programa de Pós-Graduação Análise de Sistemas Ambientais –PPGASA, Centro Universitário Cesmac, campus IV, Brasil, E-mail: tmatosrocha@cesmac.edu.br

Aldenir Feitosa dos Santos, Centro Universitário Cesmac

0000-0001-6049-9446; Docente do Programa de Pós-Graduação Análise de Sistemas Ambientais –PPGASA, Centro Universitário Cesmac, campusIV, Brasil, E-mail: afeitosasantos@cesmac.edu.br

Jessé Marques da Silva Júnior Pavão, Centro Universitário Cesmac

0000-0002-5217-3857; Docente do Programa de Pós-Graduação Análise de Sistemas Ambientais –PPGASA, Centro Universitário Cesmac, campusIV, Brasil, E-mail: jesse.marques@cesmac.edu.br

References

ABRAMS, M.D.; MOSTOLLER, S.A. Gas exchange leaf structure and nitrogen in contrasting successional tree species growing in open and understore sites during a drought. Tree Physiology, v.15, n.6, p.361-70, 1995.

ALVES, E.S. et al. Estudo anatômico foliar do clone híbrido 4430 de Tradescantia: alterações decorrentes da poluição aérea urbana. Revista Brasileira de Botânica, v. 24, n. 4, p. 567-576, 2001.

BEZERRA, J.; GOMES, T. Poluição do ar em vias de Maceió ultrapassa limites estabelecidos pela OMS. Revista eletrônica Gazetaweb. Disponível em <http://gazetaweb.globo.com/portal/noticia.php?c=703> Acessado em: 24 de agosto de 2016.

BROBOV, R.A. The leaf structure of Poa annua with observations on its smog sensitivity in Los Angeles county. American Journal of Botany, v.42, p.467-474. 1955.

BUTOVSKY, R. O. Heavy metals in carabids (Coleoptera, Carabidae). ZooKeys100: 215-222. https://doi.org/10.3897/zookeys.100.1529. 2011

BUTOVSKY, R. O.; VERHOEF, S. C.; ZAITSEV, A. S.; VAN STRAALEN, N. M. Heavy metals in different invertebrate groups as related to soil contamination. In: BUTOVSKY, R. O.; VAN STRAALEN, N. M. (Eds) Pollution-induced changes in soil invertebrate foodwebs. (1999). Report n. D99017. Vrije Universiteit, Amsterdam, p.117–129, 1999.

CETESB. Companhia de Tecnologia de Saneamento Ambiental. Relatório de qualidade do ar do Estado de São Paulo de 2003. CETESB, Série Relatórios, São Paulo, 2004.

CRISPIM, B. A.; et al. Effects of atmospheric pollutants on somatic and germ cells of Tradescantia pallida(Rose) DR HUNT cv. purpurea. Anais da Academia Brasileira de Ciências, v. 86, n. 4, p. 1899-1906, 2014.

FILGUEIRA, F. A. R. Novo Manual de Olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. Viçosa: UFV, p.402, 2000.

HEIKENS, A.; PEIJNENBURG, W. J.; HENDRIKS, A. J. Bioaccumulation of heavy metals in terrestrial invertebrates. Environ. Pollut. v.113, p.385–393, 2001.

IUPAC -INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY. “Heavy metals”—A meaningless term?Pure Appl. Chem., v.74, n. 5, p.793–807, 2002.

JANSSEN, C. R.; SCHAMPHELAERE, K.; HEIJERICK, D.; MUYSSEN, B.; LOCK, K.; BOSSUYT, B.; VANGHELUWE, M.; VAN SPRANG, P. Uncertainties in the environmental risk assessment metals. Human Ecological Risk Assessment, v.6, p.1003-1018, 2000.

KRAMARZ, P.The dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 1. The ground beetle Poecilus cupreusL.Bull. Environ. Contam. Toxicol. v.4, p.531–538, 1999.

KRAWCZYK, A. The Effect of Atmospheric Pollution on some Parameters of Haemolymph of Leucoma salicis, University of Silesia, Katowice, Poland, Sci Rep. v.10, n.1, p.1–9, 1982.

LANBERTINI, A.; LEENHARDT, J. Vertical Gardens. 1ª Edição. Londres, Reino Unido: Verba Volant Ltd., p.239, 2007.

LEAKEY, A. D. B.; AINSWORTH, E. A.; BERNACCHI, C. J.; ROGERS, A.; LONG, S. P.; ORT, D. R. Elevated CO2effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, v.60, n.10, p.2859–2876, 2009. https://doi.org/10.1093/jxb/erp096

LUZ, R.C. Respostas de Tradescantia zebrina Heynh. ex Bosse às condições diferenciais de luz e sazonalidade. Instituto Latino-Americano De Ciências Da Vida e da Natureza (ILACVN) Trabalho final de curso (TFG), Ciências Biológicas –Ecologia e Biodiversidade, p.42, 2016.

MAGALHÃES, M. R. L. Concentrações naturais de elementos químicos da classe insecta do fragmento florestal de mata atlântica reserva charles Darwin. Universidade Federal de Pernambuco. Dissertação (Mestrado), Tecnologias Energéticas e Nucleares, p. 99, 2015.

MEIRELES, J. R. C.; CERQUEIRA, E. M. M. Use of the Micronucleus Test on Tradescantia (Trad-MCN) to Evaluate the Genotoxic Effects of Air Pollution. In: MOLDOVEANU, A. M. (Ed.). Air pollution: new developments. [S.l.]: InTech, 2011. http://dx.doi.org/10.5772

MIGULA, P.; KARPINSKA, B. The effect of atmospheric pollution on a-glycerophosphate dehydrogenase activity in the satin moth [Leucoma Salicis(L.)].Environmental Monitoring and Assessment, 11, 69-78, 1988

MIGULA, P., et al. Antioxidative defence enzymes in beetles from a metal pollution gradient.Biologia Bratislava, v.59, n. 5, p. 645—654, 2004.

OLIVEIRA, M. A. et al. Bioindicadores ambientais: insetos como um instrumento desta avaliação. Rev. Ceres, v.61, p. 800-807, 2014. Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-737X2014000700005&lng=en&nrm=iso>. access on 29 July 2020. https://doi.org/10.1590/0034-737x201461000005.

ORLOWSKI, G. et al. Breaking down insect stoichiometry into chitin-based and internal elemental traits: Patterns and correlates of continent-wide intraspecific variation in the largest European saproxylic beetle. Environmental Pollution, v.262, 2020.

PORRA, R.J.; THOMPSON, W.A.; KRIEDEMANN, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with 4 different solvents: verification of the concentration of chlorophyll standarts by atomic absorption spectroscopy. Biochimica et Biophysica Acta, v.975, p.384:394. 1989.

RABITSCH, W. Metal accumulation in arthropods near a lead/zinc smelter in Arnoldstein, Austria. Environ. Pollut. v.90, p.221–237, 1995.

SANTOS, T. O. DOS. Biomonitoração da qualidade do ar em decorrência da queima da cana-de-açúcar na reserva ecológica de Gurjaú-PE. Dissertação (Mestrado) –Universidade Federal de Pernambuco. Recife: 59 folhas, CTG. Programa de Pós-Graduação em Tecnologias Energéticas e Nucleares, 2011.

SEINFELD, J.H. Atmospheric chemistry and physics of air pollution. John Wiley & Sons, New York. p,738,1986.28.SPIRO, T. G.; STIGLIANI, W. M. Química ambiental. Tradução Sonia Midori Yamamoto. 2. ed. São Paulo: Pearson Prentice Hall, 2009.

STONE, D., JEPSON, P., KRAMARZ, P., LASKOWSKI, R. Time to death response in carabid beetles exposed to multiple stressors along a gradient of heavy metal pollution. Environ. Pollut. v.113, p.239 –244, 2001.

TOMAR, R, S.; SINGH, B.; JAJOO, A. Effects of Organic Pollutants on Photosynthesis. In: Ahmad, P.; Ahanger, M. A.; Alyemeni, M. N.; Alam, P (editors). Photosynthesis, Productivity and Environmental Stress, John Wiley & Sons Ltd, 2019. DOI:10.1002/9781119501800

VAITSMAN, E. P.; VAITSMAN, D. S. Química & Meio Ambiente: Ensino Contextualizado.Rio de Janeiro: Interciência, 2006.

VAN STRAALEN, N. M.; VAN WENSEM, J. Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environ. Pollut. v.42, p.209–221, 1986.

WELLBURN, A.R. Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytology, v.115, p.95-429, 1990.

Published

2021-01-26

How to Cite

Tenório, M. A. M., Rocha, T. J. M., Santos, A. F. dos, & Pavão, J. M. da S. J. (2021). Model vertical gardens as atmospheric quality bioindicator in urban area in Maceió –Alagoas -Brazil. Diversitas Journal, 6(1), 291–310. https://doi.org/10.17648/diversitas-journal-v6i1-1048