Aplicação de óxidos de metais como catalisadores heterogêneos na isomerização da glicose em meio aquoso
DOI:
https://doi.org/10.17648/diversitas-journal-v6i1-1600Abstract
ABSTRACT: Currently, the use of renewable and sustainablesources to produce energy and chemicalsassociatedwiththedevelopment of heterogeneous catalystsis a promisingstrategy, as theyhavetheadvantage of beingrecovered and reused, reducingcosts and contamination. In thissense, biomassderivedsugars, suchas glucose and fructose, canbeused as buildingblocks to producechemical inputs, whichcancomplementorreplace some petrochemicalderivatives and presentgreat industrial potential and high addedvalue. Thus, theisomerization of glucose to fructose in aqueousmediumwasstudiedusing metal oxides SnO2, MoO3 and SnO2/MoO3compared to thereactionwithoutcatalyst. The catalyticactivitieswereevaluated in terms of conversion and yield to fructoseattemperatures of 50 and 70ºC withreaction times of 0,25 to 6h.The catalystswerecharacterizedusingtechniquessuch as infraredabsorptionspectroscopy (FTIR), thermogravimetric analysis (TG / DTA) and X-ray diffraction (XRD). The resultsdemonstratethatthemainfactorthatinfluencesthe glucose conversion are theacidic sites present in thecatalytic systems. Withthisstudy it canbeseenthatmolybdenum oxide and mixed oxide led to high conversions, howevermolybdenum oxide showedbetterresults in terms of fructose yield. In addition, otherminorityproductssuch as glyceraldehyde and pyruvaldehydehavebeenidentified and quantified.
KEYWORDS:Biomass. Catalysis. Monosaccharides.
Metrics
References
AIDA, TakuMichael; TAJIMA, Kiyohiko; WATANABE, Masaru; SAITO, Yuki; KURODA, Kiyoshi; NONAKA, Toshiyuki; HATTORI, Hideo; SMITH JR, Richard Lee; ARAI, Kunio. Reactions of d-fructose in water at temperaturesup to 400 ◦C and pressures up to 100 MPa. Journalof Supercritical Fluids,v. 42, n. 1, p. 110–119,Agosto,2007.
ALMEIDA, Rusiene M.; SOUZA, Felipe T. C.; JÚNIOR, Marcos A.C.; ALBUQUERQUE, Nilson J. A.; MENEGHETTI, Simoni. M. P.; MENEGHETTI, Mário R.; Improvements in acidity for TiO2and SnO2via impregnation with MoO3for the esterification of fatty acids, Catalysis Communications,v. 46, n. 10, p. 179–182,Fevereiro, 2014.
NTUNES, Margarida M.; LIMA, Sérgio; FERNANDES, Auguste; CANDEIAS, Joana; PILLINGER, Martyn; ROCHA, Sílvia M.; RIBEIRO, Maria F.; VALENTE, Anabela A. Catalytic dehydration of D-xylose to 2-furfuraldehyde in the presence of Zr-(W,Al) mixed oxides. Tracing by-products using two-dimensional gas chromatography-time-of-flight mass spectrometry, Catalysis Today,v. 195,n. 1,p. 127–135,Novembro,2012.
BERMEJO-DEVAL, Ricardo; ORAZOV, Marat; GOUNDER, Rajamani; HWANG, Son-Jong; DAVIS, MarkE.; Active sites in Sn-Beta for glucose isomerization to frutose and epimerization to mannose. ACS Catalysis,v. 4, n. 7, p. 2288–2297,Junho,2014.
OZELL, Joseph J.; Feedstocks for the Future -Biorefinery Production of Chemicals from Renewable Carbon. Clean -Soil, Air, Water,v.36, n. 8, p. 641–647, Agosto, 2008.
BOZELL, Joseph J.; PETERSEN, Gene R.; Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry,v. 12, n. 4, p. 539-554, Março, 2010.
CHATTERJEE, Chandrani; PONG, Frances; SEN, Ayusman; Chemical conversion pathways for carbohydrates, Green Chemistry,v. 17, n. 1, p. 40–71, Janeiro, 2015.
CHHEDA, Juben N.; HUBER, George W.; DUMESIC, James A. Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. AngewandteChemieInternacionalEdition,v. 46, n. 38, p. 7164 –7183, Setembro, 2007.
CLIMENT, Maria J.; CORMA, Avelino; IBORRA, Sara.Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry,v. 16, n. 2, p. 516–547, Janeiro, 2014.
DELIDOVICH, Irina; PALKOVITS, Regina. Catalytic isomerization of biomass-derived aldoses: A review. ChemSusChem,v. 9, n. 6, p. 547 –561, Março, 2016.
DESPAX, Solenne; ESTRINE, Boris; HOFFMANN, Nobert; BRAS, Jean L.; MARINKOVIC, Sinisa; MUZART, Jacques.; Isomerization of D-glucose into D-fructose with a heterogeneous catalyst in organic solvents. Catalysis Communications,v. 39, n. 8, p. 35–38, Setembro, 2013.
DOS SANTOS, Jailma B.; DE ALBUQUERQUE, Nilson J. A.; ZANTA, CarmenL. P. S.; MENEGHETTI, Mário R.; MENEGHETTI, Simoni M.P.; Fructose conversion in the presence of Sn(IV) catalysts exhibiting high selectivity to lactic acid.RCS Advances,v.5,n. 110, p. 90952-90959, Outubro, 2015.
DOS SANTOS, Thatiane V.; AVELINO, Débora O. S.; MENEGHETTI, Mário R.; MENEGHETTI, Simoni M.P. Mixed oxides based on SnO2 impregnated with MoO3A robust system to apply in fructose conversion. Catalysis Communications, v. 114, n. 27, p. 120-123, Junho, 2018.
GAILY, Mohamed H.; ELHASSAN, Basheir M.; ABASAEED, Ahmed E.; AL-SHRHAN, Mohammad. Isomerization and kinetics of glucose into fructose. International Journal of Engineering & Technology,v. 10, n. 3, p. 1-6, Janeiro, 2010.
GALLEZOT, Pierre. Conversion of biomass to selected chemical products, Chemical Society Reviews,v. 41, n. 4, p. 1538–1558, Janeiro, 2012.
GUO, Jing; ZHU, Shanhui; CENA, Youliang; QINA, Zhangfeng; WANG, Jianguo; FAN, Weibin. Ordered mesoporous Nb–W oxides for the conversion of glucoseto fructose, mannose and 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, v. 200, n. 64, p. 611–619,Janeiro,2017.
HARRIS, Donald W.; FEATHER, Milton S.; Mechanism of the interconversion of D-glucose, D-mannose, and D-fructose in acid solution. Journalof The AmericanChemicalSociety,v. 97, n. 1, p. 178–181, Janeiro, 1975.
MARIANOU, Asimina A.; MICHAILOF, Chrysoula M.; IPSAKIS, Dimitrios K.; KARAKOULIA, Stamatia A.; KALOGIANNIS, Konstantinos G.; YIANNOULAKIS, Haris; TRIANTAFYLLIDIS, Konstantinos S.; LAPPAS, Angelos A. Isomerization of Glucose intoFructose over Natural and SyntheticMgOCatalysts. ACS SustainableChemistry andEngineering, v. 6, n. 12, p. 16459−16470, Novembro, 2018.
LI, Hu; YANG, Song; SARAVANAMURUGAN, Shunmugavel; RIISAGER, Anders; Glucose isomerization by enzymes and chemo-catalysts: status and current advances, ACS Catalyss,v. 7,n. 4,p. 3010-3029, Março, 2017.
LI, Sha; JOSEPHSON, Tyler; VLACHOS, Dionisios G.; CARATZOULAS, Stavros; The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEAzeolites.Journal of Catalysis, v. 355, n. 2, p. 11-16,Novembro, 2017.
LIU, Chi; CARRAHER, Jack M.; SWEDBERG, Jordan L.; HERNDON, Caitlyn. R.; FLEITMAN, Chelsea N.; TESSONNIER, Jean-Philippe; Selective Base-Catalyzed Isomerization of Glucose to Fructose, ACS Catalysis, v. 4, n. 12, p. 4295−4298, Outubro, 2014.
MALLESHAM, Baithy; SUDARSANAM, Putla; RAJU, Gangadhara; REDDY, Benjaram M.; Design of highly efficient Mo and W-promoted SnO2solid acids for heterogeneous catalysis: acetalization of bio-glycerol,Green Chemistry, v. 15, n. 2, p. 478-490, Janeiro, 2013.
MARIANOU, Asimina A.; MICHAILOF, Chrysoula M.; PINEDA, Antonio; ILIOPOULOU, EleniF.; TRIANTAFYLLIDIS, Kostas S.; LAPPAS, Aangelos A.; Glucose to fructose isomerization in aqueous media over homogeneous and heterogeneous catalysts. ChemCatChem, v. 8, n. 6, p. 1100 –1110, Fevereiro, 2016.
MOLINER, Manuel. State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes, Dalton Transactions,v. 43, n. 11, p. 4197-4208,Janeiro, 2014.
MOREAU, Claude; DURAND, Robert; ROUX, Alain; TICHIT, Didier. Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites. Applied Catalysis A: General,v. 193, n. 25, p. 257–264, Fevereiro, 2000.
OSATIASHTIANI, Amin; LEE, Adam F.; BROWN, Robert D.; MELERO, Juan A.; MORALES, Gabriel; WILSON, Karen. Bifunctional SO4/ZrO2catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catalysis Science and Technology, v. 4, n. 2, p. 333-342, Janeiro, 2014.
OTOMO, Ryoichi; FUJIMOTO, Momo; NAGAO, Masanori; KAMIYA, Yuichi. Ammonia-treated metal oxides as bases catalysts for selectiveisomerization of glucose in water. Molecular Catalysis, v. 475, n. 13, p. 1-8, Outubro, 2019.
PARSHETTI, Ganesh K.; SURYADHARMA, Maria S.; PHAM, Thi P. T.; MAHMOOD, Russell; BALASUBRAMANIAN, Rajasekhar. Heterogeneous catalyst-assisted thermochemical conversion of food waste biomass into 5-hydroxymethylfurfural. Bioresource Technology, v. 178, n. 3, p. 19–27, Fevereiro, 2015.
RABEE, Abdallah I. M.; LE, Son D.; NISHIMURA, Shun.MgO-ZrO2Mixed Oxides as Effective and Reusable Base Catalysts for Glucose IsomerizationintoFructose in Aqueous Media. Chemistry -AsianJournal,v. 15, n. 2, p. 294 –300, Janeiro, 2020.
RAI, Neera j; CARATZOULAS, Stavros; VLACHOS, DionsiosG. Role of Silanol Group in Sn-Beta Zeolite for Glucose Isomerization and Epimerization Reactions, ACS Catalysis,v. 3, n. 10, p. 2294–2298, Setembro, 2013.
RAJABBEIGI, Nafiseh; TORRES, Ana I.; LEW, Christopher M.; ELYASSI, Bahman; REN, Limin; WANG, Zhuopeng; CHO, Hong J.; FAN, Wei.; DAOUTIDIS, Prodromos; TSAPATSIS, Michael. On the kinetics of the isomerization of glucose to fructose using Sn-Beta, Chemical Engineering Science, v.116, n. 22, p. 235-242,Setembro,2014.
ROMÁN-LESHKOV, Yuriy; MOLINER, Manuel; LABINGER, Jay A.; DAVIS, Mark E. Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angewandte Chemie International Edition,v. 49, n. 47, p. 8954 –8957, Outubro, 2010.
ROSATELLA, Andreia A.; SIMEONOV, Svilen P.; FRADE, Raquel F. M.; AFONSO, Carlos A. M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry,v. 13, n. 4, p. 754–793, Fevereiro, 2011.
SAGADEVAN, Suresh; PODDER, Jiban.Optical and ElectricalProperties of Nanocrystalline SnO2ThinFilmsSynthesizedby Chemical BathDeposition Method. Soft NanoscienceLetters, v. 5, n. 4, p. 55-64, Outubro, 2015.
SHUTTLEWORTH, P. S.; DE BRUYN, M.; PARKER, H. L.; HUNT, A.J.; BUDARIN, V. L.; MATHARU, A. S.; CLARK, J. H. Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chemistry,vol. 16, n. 2, p. 573–584, Janeiro, 2014.
STOŠIĆ, Dusan; BENNICIA, Simona; RAKIĆ, Vesna; AUROUX, Aline; CeO2–Nb2O5mixed oxide catalysts: Preparation, characterization and catalytic activity in fructose dehydration reaction, Catalysis Today,v. 192, p. 160–168, Janeiro, 2012.
YU, Sungdong; KIM, Eudem; PARK, Sunyoung; SONG, InK.; JUNG, JiC.; Isomerization of glucose into fructose over Mg–Al hydrotalcite catalysts, Catalysis Communications,v. 29, n. 13, p. 63–67,Dezembro,2012.
ZHANG, B.; TIAN, B, Y.; ZHANG, J.X.; CAI, W. The FTIR studies of SnO2:Sb(ATO) filmsdepositedby spray pyrolysis. Materials Letters, v. 65, n. 8, p. 1204–1206, Abril, 2011.
ZHANG, Xingguang; WILSON, Karen; LEE, AdamF.; Heterogeneously Catalyzed Hydrothermal Processing of C5−C6Sugars, ChemicalReviews,v. 116, n. 19, p. 12328−12368, Setembro, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Evellyn Patricia Santos da Silva, Thatiane Veríssimo dos Santos, Simoni Margareti Plentz Meneghetti

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Diversitas Journal expresses that the articles are the sole responsibility of the Authors, who are familiar with Brazilian and international legislation.
Articles are peer-reviewed and care should be taken to warn of the possible incidence of plagiarism. However, plagiarism is an indisputable action by the authors.
The violation of copyright is a crime, provided for in article 184 of the Brazilian Penal Code: “Art. 184 Violating copyright and related rights: Penalty - detention, from 3 (three) months to 1 (one) year, or fine. § 1 If the violation consists of total or partial reproduction, for the purpose of direct or indirect profit, by any means or process, of intellectual work, interpretation, performance or phonogram, without the express authorization of the author, the performer, the producer , as the case may be, or whoever represents them: Penalty - imprisonment, from 2 (two) to 4 (four) years, and a fine. ”