Biogenic Synthesis and Antifungal Efficacy of Citrus macrocarpa Bunge-Derived Copper Oxide Nanoparticles for Sustainable Agricultural Pathogen Management

Authors

  • Gary Antonio Lirio Research Institute for Science and Technology, Polytechnic University of the Philippines, 1008 Manila, Philippines,
  • Dasha Bagkus Navotas National Science High School, 1485 Navotas, Philippines
  • Erin Wade Acuna Navotas National Science High School, 1485 Navotas, Philippines https://orcid.org/0009-0008-1233-790X
  • Jhencel Jaela Cruz Navotas National Science High School, 1485 Navotas, Philippines https://orcid.org/0009-0008-1233-790X
  • Rain Nicole Dizon Navotas National Science High School, 1485 Navotas, Philippines https://orcid.org/0009-0008-1233-790X
  • Don King Evangelista Navotas National Science High School, 1485 Navotas, Philippines

DOI:

https://doi.org/10.48017/dj.v9i4.3041

Keywords:

Green Nanotechnology, Copper Oxide Nanoparticles, Citrus microcarpa, Sustainable Agriculture, Plant Pathogen Management

Abstract

Esta investigación aborda la necesidad de prácticas sostenibles en la agricultura mediante el uso de nanotecnología verde para combatir los patógenos de las plantas. Las nanopartículas de óxido de cobre derivadas de Citrus macrocarpa Bunge (CuO-CmNPs) se sintetizaron biogénicamente utilizando extractos de hojas de la planta. El objetivo fue evaluar sus propiedades antifúngicas contra Fusarium oxysporum, un patógeno agrícola prevalente. Metodológicamente, las nanopartículas se caracterizaron mediante microscopía electrónica de barrido (SEM) y espectroscopia infrarroja por transformada de Fourier (FTIR), que confirmaron su diverso tamaño y distintas funcionalidades orgánicas en la superficie. Un ensayo de dilución en agar demostró una reducción del 61,98% en el crecimiento del patógeno, mostrando una eficacia cercana a la de los fungicidas comerciales estándar, que lograron una reducción del 72,39%. Las evaluaciones estadísticas, incluida una prueba HSD de Tukey, subrayaron la importancia de estos resultados. Los hallazgos respaldan el avance de las prácticas agrícolas sostenibles, en consonancia con los Objetivos de Desarrollo Sostenible 12 y 15, que abogan por la producción responsable y la conservación de los ecosistemas terrestres. El estudio recomienda una mayor optimización de los parámetros de síntesis para mejorar la eficacia antifúngica de las CuO-CmNP y sugiere realizar estudios detallados sobre su interacción con las células fúngicas. También se recomiendan evaluaciones del impacto ambiental a largo plazo de las CuO-CmNP.

Metrics

Metrics Loading ...

Author Biographies

Gary Antonio Lirio, Research Institute for Science and Technology, Polytechnic University of the Philippines, 1008 Manila, Philippines,

0000-0002-0265-1718; Research Institute for Science and Technology, Polytechnic University of the Philippines, 1008 Manila, Philippines, gaclirio@pup.edu.ph

Dasha Bagkus, Navotas National Science High School, 1485 Navotas, Philippines

0009-0009-4317-8726; Navotas National Science High School, 1485 Navotas, Philippines, dasha.bagkus.navsci@gmail.com.

Erin Wade Acuna, Navotas National Science High School, 1485 Navotas, Philippines

0009-0004-8242-118X; Navotas National Science High School, 1485 Navotas, Philippines, erinwade.acuna.navsci@gmail.com

Jhencel Jaela Cruz, Navotas National Science High School, 1485 Navotas, Philippines

0009-0009-8700-7830; Navotas National Science High School, 1485 Navotas, Philippines, jhncljlcrz@gmail.

Rain Nicole Dizon, Navotas National Science High School, 1485 Navotas, Philippines

0009-0005-0700-413X; Navotas National Science High School, 1485 Navotas, Philippines, rnicoledizon@gmail.com

Don King Evangelista, Navotas National Science High School, 1485 Navotas, Philippines

0009-0008-1233-790X; Navotas National Science High School, 1485 Navotas, Philippines, donking.evangelista@deped.gov.ph.

 

References

Abad-Fuentes A., Esteve-Turrillas F.A., Agulló C., Abad-Somovilla A., Mercader J.V. (2012). Development of competitive enzyme-linked immunosorbent assays for boscalid determination in fruit juices. Food Chemistry, 135, pp. 276. https://doi.org/10.1016/j.foodchem.2012.04.090.

Abboud Y., Saffaj T., Chagraoui A., El Bouari A., Brouzi K., Tanane O., Ihssane B. (2014). Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience (Switzerland), 4, pp. 571. https://doi.org/10.1007/s13204-013-0233-x.

Abdoel Wahid F., Wickliffe J., Wilson M., Van Sauers A., Bond N., Hawkins W., Mans D., Lichtveld M. (2017). Presence of pesticide residues on produce cultivated in Suriname. Environmental Monitoring and Assessment, 189, Article 303. https://doi.org/10.1007/s10661-017-6009-0.

Advincula, J., Hipolito, A., Prado, M., & Lirio, G. (2022). Evaluation of the Antimicrobial Activity of American Cockroach (Periplaneta americana) Ethanolic Tissue Extract against Selected Enteric Pathogens. European Online Journal Of Natural And Social Sciences, 11(2), pp. 302-308. Retrieved from https://european-science.com/eojnss/article/view/6351

Al-Burtamani S.K.S., Fatope M.O., Marwah R.G., Onifade A.K., Al-Saidi S.H. (2005). Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman. Journal of Ethnopharmacology, 96, pp. 107. https://doi.org/10.1016/j.jep.2004.08.039.

Antonio Lirio, G., Cerado, J. Jr., Esteban, J. T., Adriano Ferrer, J., & Salvedia, C. (2023). Growth Performance of Broiler Chicken Supplemented with Bacillus velezensis D01Ca and Bacillus siamensis G01Bb Isolated from Goat and Duck Microbiota. In Pertanika Journal of Tropical Agricultural Science (Vol. 46, Issue 4, pp. 1097–1110). Universiti Putra Malaysia. https://doi.org/10.47836/pjtas.46.4.02

Antonioli G., Fontanella G., Echeverrigaray S., Longaray Delamare A.P., Fernandes Pauletti G., Barcellos T. (2020). Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chemistry, 326, Article 126997. https://doi.org/10.1016/j.foodchem.2020.126997.

Bahrulolum H., Nooraei S., Javanshir N., Tarrahimofrad H., Mirbagheri V.S., Easton A.J., Ahmadian G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19, Article 86. https://doi.org/10.1186/s12951-021-00834-3.

De Boer H.J., Kool A., Broberg A., Mziray W.R., Hedberg I., Levenfors J.J. (2005). Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. Journal of Ethnopharmacology, 96, pp. 461. https://doi.org/10.1016/j.jep.2004.09.035.

Dela Cruz Carnaje, Ma. M. D., Rebenque, J. D. T., & Cenidoza Lirio, G. A. (2023). Antimicrobial Activities of Mangrove Species in Southeast Asia: A Systematic Review. In Jurnal Sains Kesihatan Malaysia (Vol. 21, Issue 2, pp. 85–105). Penerbit Universiti Kebangsaan Malaysia (UKM Press). https:/

Di S., Diao Z., Cang T., Wang Z., Xu L., Qi P., Zhao H., Liu Z., Wang X. (2024). Enantioselective fate and risk assessment of chiral fungicide pydiflumetofen in rice-fish and wheat farming systems. Science of the Total Environment, 912, Article 169262. https://doi.org/10.1016/j.scitotenv.2023.169262.

Duru M.E., Cakir A., Kordali S., Zengin H., Harmandar M., Izumi S., Hirata T. (2003). Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia, 74, pp. 170. https://doi.org/10.1016/S0367-326X(02)00318-0.

Edwards Q.A., Sultana T., Kulikov S.M., Garner-O'Neale L.D., Metcalfe C.D. (2019). Micropollutants related to human activity in groundwater resources in Barbados, West Indies. Science of the Total Environment, 671, pp. 76. https://doi.org/10.1016/j.scitotenv.2019.03.314.

Enebe M.C., Babalola O.O. (2019). The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach. Applied Microbiology and Biotechnology, 103, pp. 9. https://doi.org/10.1007/s00253-018-9433-3.

Erdemir S., Oguz M., Malkondu S. (2023). Cu2+-assisted sensing of fungicide Thiram in food, soil, and plant samples and the ratiometric detection of Hg2+ in living cells by a low cytotoxic and red emissive fluorescent sensor. Journal of Hazardous Materials, 452, Article 131278. https://doi.org/10.1016/j.jhazmat.2023.131278.

Fuego, B. N., Romano, K. G., Pinlac, C. D., & Lirio, G. A. C. (2021). Evaluation of the Antimicrobial Activity of Endophytic Fungus Isolated from <i>Cocos nucifera</i> (L.) Cotyledon against Medically-Important Pathogens. In Journal of Biosciences and Medicines (Vol. 09, Issue 01, pp. 86–97). Scientific Research Publishing, Inc. https://doi.org/10.4236/jbm.2021.91007

Gallego J.L., Olivero-Verbel J. (2021). Cytogenetic toxicity from pesticide and trace element mixtures in soils used for conventional and organic crops of Allium cepa L. Environmental Pollution, 276, Article 116558. https://doi.org/10.1016/j.envpol.2021.116558.

Ganesan A.R., Mohan K., Karthick Rajan D., Pillay A.A., Palanisami T., Sathishkumar P., Conterno L. (2022). Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chemistry, 378, Article 131978. https://doi.org/10.1016/j.foodchem.2021.131978.

García M.G., Sánchez J.I.L., Bravo K.A.S., Cabal M.D.C., Pérez-Santín E. (2022). Review: Presence, distribution and current pesticides used in Spanish agricultural practices. Science of the Total Environment, 845, Article 157291. https://doi.org/10.1016/j.scitotenv.2022.157291.

Gómez-Gutiérrez A., Garnacho E., Bayona J.M., Albaigés J. (2007). Assessment of the Mediterranean sediments contamination by persistent organic pollutants. Environmental Pollution, 148, pp. 396. https://doi.org/10.1016/j.envpol.2006.12.012.

Hamdy Abdelwahed M., Khorshid M.A., El-Marsafy A.M., Souaya E. (2019). Validation of short run time LC-ESI (+) MS/MS method for determination of twenty recommended pesticide residues in food based on QuEChERS extraction technique. International Journal of Environmental Analytical Chemistry, 99, pp. 409. https://doi.org/10.1080/03067319.2019.1597865.

Hassan M.M., Xu Y., He P., Zareef M., Li H., Chen Q. (2022). Simultaneous determination of benzimidazole fungicides in food using signal optimized label-free HAu/Ag NS-SERS sensor. Food Chemistry, 397, Article 133755. https://doi.org/10.1016/j.foodchem.2022.133755.

Hengel M., Lee P. (2014). Community air monitoring for pesticides - Part 2: Multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. Environmental Monitoring and Assessment, 186, pp. 1343. https://doi.org/10.1007/s10661-013-3395-9.

Herrero-Hernández E., Simón-Egea A.B., Sánchez-Martín M.J., Rodríguez-Cruz M.S., Andrades M.S. (2020). Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla. Environmental Pollution, 264, Article 114666. https://doi.org/10.1016/j.envpol.2020.114666.

Husen A., Siddiqi K.S. (2014). Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Research Letters, 9, Article 229, pp. 1. https://doi.org/10.1186/1556-276X-9-229.

Jadoun S., Arif R., Jangid N.K., Meena R.K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters, 19, pp. 355. https://doi.org/10.1007/s10311-020-01074-x.

Jasso De Rodríguez D., Hernández-Castillo D., Rodríguez-García R., Angulo-Sánchez J.L. (2005). Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Industrial Crops and Products, 21, pp. 81. https://doi.org/10.1016/j.indcrop.2004.01.002.

Justin Packia Jacob S., Finub J.S., Narayanan A. (2012). Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surfaces B: Biointerfaces, 91, pp. 212. https://doi.org/10.1016/j.colsurfb.2011.11.001.

Khan S.A., Noreen F., Kanwal S., Iqbal A., Hussain G. (2018). Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science and Engineering C, 82, pp. 46. https://doi.org/10.1016/j.msec.2017.08.071.

Kharissova O.V., Dias H.V.R., Kharisov B.I., Pérez B.O., Pérez V.M.J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31, pp. 240. https://doi.org/10.1016/j.tibtech.2013.01.003.

Kumar R., Mishra A.K., Dubey N.K., Tripathi Y.B. (2007). Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. International Journal of Food Microbiology, 115, pp. 159. https://doi.org/10.1016/j.ijfoodmicro.2006.10.017.

Lewis K., Rainford J., Tzilivakis J., Garthwaite D. (2021). Application of the Danish pesticide load indicator to arable agriculture in the United Kingdom. Journal of Environmental Quality, 50, pp. 1110. https://doi.org/10.1002/jeq2.20262.

Lirio, G. A. (2022). Multidrug Resistant Strains Inhibition by Bacillus Species from the Gut of Oreochomis niloticus and Pomacea canaliculata. In Pertanika Journal of Science and Technology (Vol. 30, Issue 2, pp. 1657–1688). Universiti Putra Malaysia. https://doi.org/10.47836/pjst.30.2.44

Lirio, G. A. C., De Leon, J. A. A., & Villafuerte, A. G. (2018). Antimicrobial Activity of Epidermal Mucus from Top Aquaculture Fish Species against Medically-Important Pathogens. Walailak Journal of Science and Technology (WJST), 16(5), 329–340. https://doi.org/10.48048/wjst.2019.6287

Lirio, G. A. C., Suavengco, A. B. A., Antonio, K. C. C., Aggarao, J. E. P., & Mamansag, J. G. (2020). Evaluation of the biocontrol potential of endophytic bacteria isolated from Coffea liberica (w. Bull ex hiern) against brown eyespot-causing fungal phytopathogen. In Malaysian Journal of Microbiology. Malaysian Journal of Microbiology. https://doi.org/10.21161/mjm.200778

Lirio, G., Coronado, A., Labana, R., Dungca, J., Cabrera, E., Arriola, A., & Adajar, J. (2022). Antimicrobial Activity of the Rhizospheric Bacillus Species Isolated from Potato (Solanum tuberosum) Organic Farm Soils in the Philippines. European Online Journal Of Natural And Social Sciences, 11(1), pp. 174-197. Retrieved from https://european-science.com/eojnss/article/view/6384

Lopez-Antia A., Ortiz-Santaliestra M.E., Mougeot F., Camarero P.R., Mateo R. (2021). Birds feeding on tebuconazole treated seeds have reduced breeding output. Environmental Pollution, 271, Article 116292. https://doi.org/10.1016/j.envpol.2020.116292.

Lv L., Li W., Li X., Wang D., Weng H., Zhu Y.-C., Wang Y. (2023). Mixture toxic effects of thiacloprid and cyproconazole on honey bees (Apis mellifera L.). Science of the Total Environment, 870, Article 161700. https://doi.org/10.1016/j.scitotenv.2023.161700.

Mali S.C., Dhaka A., Githala C.K., Trivedi R. (2020). Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports, 27, Article e00518. https://doi.org/10.1016/j.btre.2020.e00518.

May L. (2003). Opening Address: Chemical Engineering and Tomorrow's World. Chemical Engineering: Visions of the World, , pp. 1. https://doi.org/10.1016/B978-044451309-0/50082-8.

Nagajyothi P.C., Muthuraman P., Sreekanth T.V.M., Kim D.H., Shim J. (2017). Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian Journal of Chemistry, 10, pp. 215. https://doi.org/10.1016/j.arabjc.2016.01.011.

Narayanan K.B., Sakthivel N. (2011). Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science, 169, pp. 59. https://doi.org/10.1016/j.cis.2011.08.004.

Nassar A.M.K., Salim Y.M., Nour-Eldeen E., Younis M.S., Kelany M.M., Shebl M.A., Shafey A.S., Abou-Shaara H.F. (2024). Seasonal screening of pesticide residues in beehive products collected from different districts in Egypt. Environmental Monitoring and Assessment, 196, Article 297. https://doi.org/10.1007/s10661-024-12451-2.

Nguefack J., Leth V., Amvam Zollo P.H., Mathur S.B. (2004). Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi. International Journal of Food Microbiology, 94, pp. 329. https://doi.org/10.1016/j.ijfoodmicro.2004.02.017.

Nowakowska Z. (2007). A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, 42, pp. 125. https://doi.org/10.1016/j.ejmech.2006.09.019.

Oliva A., Meepagala K.M., Wedge D.E., Harries D., Hale A.L., Aliotta G., Duke S.O. (2003). Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. Journal of Agricultural and Food Chemistry, 51, pp. 890. https://doi.org/10.1021/jf0259361.

Papaevangelou V.A., Gikas G.D., Vryzas Z., Tsihrintzis V.A. (2017). Treatment of agricultural equipment rinsing water containing a fungicide in pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 101, pp. 193. https://doi.org/10.1016/j.ecoleng.2017.01.045.

Phengnoi, P., Thakham, N., Rachphirom, T., Teerakulkittipong, N., Lirio, G. A., & Jangiam, W. (2022). Characterization of levansucrase produced by novel Bacillus siamensis and optimization of culture condition for levan biosynthesis. In Heliyon (Vol. 8, Issue 12, p. e12137). Elsevier BV. https://doi.org/10.1016/j.heliyon.2022.e12137

Pohanish R.P. (2014). Sittig's Handbook of Pesticides and Agricultural Chemicals: Second Edition. Sittig's Handbook of Pesticides and Agricultural Chemicals: Second Edition, , pp. 1. https://doi.org/10.1016/C2012-0-02568-9.

Raja S., Ramesh V., Thivaharan V. (2017). Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry, 10, pp. 253. https://doi.org/10.1016/j.arabjc.2015.06.023.

Ramkumar V.S., Pugazhendhi A., Gopalakrishnan K., Sivagurunathan P., Saratale G.D., Dung T.N.B., Kannapiran E. (2017). Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports, 14, pp. 1. https://doi.org/10.1016/j.btre.2017.02.001.

Rooney R.C., Davy C., Gilbert J., Prosser R., Robichaud C., Sheedy C. (2020). Periphyton bioconcentrates pesticides downstream of catchment dominated by agricultural land use. Science of the Total Environment, 702, Article 134472. https://doi.org/10.1016/j.scitotenv.2019.134472.

Sadło S., Szpyrka E., Piechowicz B., Antos P., Józefczyk R., Balawejder M. (2017). Reduction of Captan, Boscalid and Pyraclostrobin Residues on Apples Using Water Only, Gaseous Ozone, and Ozone Aqueous Solution. Ozone: Science and Engineering, 39, pp. 97. https://doi.org/10.1080/01919512.2016.1257931.

Salunkhe V.P., Sawant I.S., Banerjee K., Wadkar P.N., Sawant S.D., Hingmire S.A. (2014). Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification. Environmental Monitoring and Assessment, 186, pp. 8599. https://doi.org/10.1007/s10661-014-4027-8.

Shende D., Wyawahare N., Thakare L., Agrawal R. (2023). Design Process for Adaptive Spraying of Pesticides Based on Mutual Plant Health Detection and Monitoring: A Review. Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, , pp. 729. https://doi.org/10.1109/ICAIS56108.2023.10073695.

Singh G., Maurya S., de Lampasona M.P., Catalan C. (2006). Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control, 17, pp. 745. https://doi.org/10.1016/j.foodcont.2005.03.010.

Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. (2018). 'Green' synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16, Article 84. https://doi.org/10.1186/s12951-018-0408-4.

Sokefun E., Ayepola O.O., Olasehinde G.I. (2018). Mycotoxins: Food Production and Exportation in Nigeria. IOP Conference Series: Earth and Environmental Science, 210, Article 12018. https://doi.org/10.1088/1755-1315/210/1/012018.

Srivastava S., Tripathi A., Pandey R. (2014). Entophytic Microbes and Biocontrol of Plant Diseases. Biological Controls for Preventing Food Deterioration: Strategies for Pre- and Postharvest Management, 9781118533062, pp. 117. https://doi.org/10.1002/9781118533024.ch6.

Szarka A.Z., Ramanarayanan T.S. (2021). Co-occurrence of Conazole Fungicide Residues in Raw Agricultural Commodities Sampled by the United States Department of Agriculture Pesticide Data Program. Journal of Agricultural and Food Chemistry, 69, pp. 12305. https://doi.org/10.1021/acs.jafc.1c04062.

Taechowisan T., Peberdy J.F., Lumyong S. (2003). Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World Journal of Microbiology and Biotechnology, 19, pp. 381. https://doi.org/10.1023/A:1023901107182.

Thakham, N., Thaweesak, S., Teerakulkittipong, N., Traiosot, N., Kaikaew, A., Lirio, G. A., & Jangiam, W. (2020). Structural Characterization of Functional Ingredient Levan Synthesized by Bacillus siamensis Isolated from Traditional Fermented Food in Thailand. In International Journal of Food Science (Vol. 2020, pp. 1–12). Hindawi Limited. https://doi.org/10.1155/2020/7352484

Thiour-Mauprivez C., Martin-Laurent F., Calvayrac C., Barthelmebs L. (2019). Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers?. Science of the Total Environment, 684, pp. 314. https://doi.org/10.1016/j.scitotenv.2019.05.230.

Tsen C.-M., Yu C.-W., Chen S.-Y., Lin C.-L., Chuang C.-Y. (2021). Application of surface-enhanced Raman scattering in rapid detection of dithiocarbamate pesticide residues in foods. Applied Surface Science, 558, Article 149740. https://doi.org/10.1016/j.apsusc.2021.149740.

Ureta, R. M., Lirio, G. A. C., Ogbac, M. P. N., Cruzado, Z. I. A., & Muros, E. L. B. (2019). Antibacterial activity of the lyophilized aqueous leaf extract of the Philippine green-leafed Acalypha amentacea Roxb. (Maslakot-Ambulong) against selected human bacterial pathogens. In Malaysian Journal of Microbiology. Malaysian Journal of Microbiology. https://doi.org/10.21161/mjm.180323

Vankar P.S., Shukla D. (2012). Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Applied Nanoscience (Switzerland), 2, pp. 163. https://doi.org/10.1007/s13204-011-0051-y.

Vivek M., Kumar P.S., Steffi S., Sudha S. (2011). Biogenic silver nanoparticles by gelidiella acerosa extract and their antifungal effects. Avicenna Journal of Medical Biotechnology, 3, pp. 143.

Worthington M.J.H., Kucera R.L., Albuquerque I.S., Gibson C.T., Sibley A., Slattery A.D., Campbell J.A., Alboaiji S.F.K., Muller K.A., Young J., Adamson N., Gascooke J.R., Jampaiah D., Sabri Y.M., Bhargava S.K., Ippolito S.J., Lewis D.A., Quinton J.S., Ellis A.V., Johs A., Bernardes G.J.L., Chalker J.M. (2017). Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. Chemistry - A European Journal, 23, pp. 16219. https://doi.org/10.1002/chem.201702871.

Yang B.-C., Wan X.-D., Yang X., Li Y.-J., Zhang Z.-Y., Wan X.-J., Luo Y., Deng W., Wang F., Huang O.-P. (2018). Rapid determination of carbendazim in complex matrices by electrospray ionization mass spectrometry with syringe filter needle. Journal of Mass Spectrometry, 53, pp. 234. https://doi.org/10.1002/jms.4057.

Zhang Q., Yu Y., Jin M., Deng Y., Zheng B., Lu T., Qian H. (2022). Oral azoxystrobin driving the dynamic change in resistome by disturbing the stability of the gut microbiota of Enchytraeus crypticus. Journal of Hazardous Materials, 423, Article 127252.

Downloads

Published

2024-11-30

How to Cite

Lirio, G. A., Bagkus, D., Acuna, E. W., Cruz, J. J., Dizon, R. N., & Evangelista, D. K. (2024). Biogenic Synthesis and Antifungal Efficacy of Citrus macrocarpa Bunge-Derived Copper Oxide Nanoparticles for Sustainable Agricultural Pathogen Management. Diversitas Journal, 9(4). https://doi.org/10.48017/dj.v9i4.3041