Aquaponics and Extension: A Technological Intervention with Socio Environmental Impact

Authors

DOI:

https://doi.org/10.48017/dj.v10iEspecial%202.3272

Keywords:

aquaculture, technical assistance, technology

Abstract

The article addresses aquaponics as an emerging technology in Brazil, highlighting its socio-environmental potential. Aquaponics is an integrated system for cultivating fish and plants, where nutrient-rich water from fish tanks is used to irrigate plants without the use of pesticides. Although it is considered a promising technology by the European Union, its application in Brazil is still in its infancy, largely by enthusiasts or "hobbyists". In Pernambuco, the Ecology and Aquaculture Laboratory (LEA) of IFPE, in partnership with organizations such as SERTA and INMED, has been promoting aquaponics as a sustainable and income-generating alternative. LEA/IFPE develops research and extension projects to optimize the use of this technology, especially in vulnerable communities. The INMED Aquaponics system, installed at SERTA in Glória do Goitá, aims to improve food security for local families. The article also assesses the technical and economic challenges of the sector, such as problems with water quality, electricity, and nutrient management. The study highlights the importance of technical assistance in the development of aquaponics in Brazil. It also points out that contextualized technical and technological extension contributes to increasing the positive socio-environmental impact of aquaponic systems.

Metrics

Metrics Loading ...

Author Biographies

Nemo Côrtes, Universidade Federal Rural de Pernambuco. Recife, PE, Brasil

0000-0001-5864-5651; Universidade Federal Rural de Pernambuco. Recife, PE, Brasil. nemo.cortes@ufrpe.br

Willy Vila Nova Pessoa, Instituto Federal de Pernambuco. Vitória de Santo Antão, PE, Brasil

0000-0002-5310-807X; Instituto Federal de Pernambuco. Vitória de Santo Antão, PE, Brasil. willy.vilanova@vitoria.ifpe.edu.br

Caio César Vicente Silva Souza , Instituto Federal de Pernambuco - IFPE. Vitória de Santo Antão, PE, Brasil

0009-0005-2251-1623; Instituto Federal de Pernambuco - IFPE. Vitória de Santo Antão, PE, Brasil. ccvss@discente.ifpe.edu.br

Vanessa Maria Santos, Universidade Federal de Pernambuco. Vitória de Santo Antão, PE, Brasil

0000-0002-3776-0471; Universidade Federal de Pernambuco. Vitória de Santo Antão, PE, Brasil. vanessa.mariasantos@ufpe.br

References

Altieri, M. A., & Koohafkan, P. (2004). Globally Important Ingenious Agricultural Heritage Systems (GIAHS): Extent, significance, and implications for development. FAO.

Carneiro, P. C. F., Morais, C. A. R. S., & Nunes, M. U. C., et al. (2015). Produção integrada de peixes e vegetais em aquaponia. Embrapa Tabuleiros Costeiros. (Documentos, ISSN 1678-1937, 189).

Corrêa, B. R. S. (2018). Aquaponia rural.

Corrêa, B. R. S., Da Cruz Júnior, C. A., & Corrêa, V. R. S. (2016). A aquaponia como tecnologia social para agricultura familiar. Anais SNCMA, 7.

Corrêa, B. R. S., et al. (2018). Aquaponia: um sistema agroecológico resiliente. Cadernos de Agroecologia, 13(1).

Côrtes, N. A. M., Gervais, A. M. D., & Mattos, J. L. S. (2022). Elements for an aquaponics genealogy: Ancestors of an innovative social technology. International Journal of Advanced Engineering Research and Science, 9(10), 231–240. https://doi.org/10.22161/ijaers.910.28

David, L. H., Pinho, S. M., & Agostinho, F., et al. (2022). Sustainability of urban aquaponics farms: An emergy point of view. Journal of Cleaner Production, 331, 129896. https://doi.org/10.1016/j.jclepro.2021.129896

Dal Soglio, F. K. (2017). Princípios e aplicações da pesquisa participativa em agroecologia. REDES: Revista do Desenvolvimento Regional, 22(2), 116–136.

Eebel, R. (2020). Chinampas: an urban farming model of the Aztecs and a potential solution for modern megalopolis. HortTechnology, 30(1), 13–19.

FAO. (2018). The state of world fisheries and aquaculture 2018: Meeting the sustainable development goals. Rome: FAO. Licence: CC BY-NC-SA 3.0 IGO.

Goddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., & Keesman, K. J. (2019). Decoupled aquaponics systems. In S. Goddek, A. Joyce, B. Kotzen, & G. M. Burnell (Eds.), Aquaponics food production systems (pp. 201–229). Cham: Springer International Publishing.

Goddek, S., et al. (2019). Aquaponics food production systems: Combined aquaculture and hydroponic production technologies for the future. Springer Nature.

Goodman, E. R. (2011). Aquaponics: Community and economic development. [Doctoral dissertation, Massachusetts Institute of Technology].

König, B., Janker, J., Reinhardt, T., Villarroel, M., & Junge, R. (2018). Analysis of aquaponics as an emerging technological innovation system. Journal of Cleaner Production, 180, 232–243.

Kubitza, F. (2006). Sistemas de recirculação: sistemas fechados com tratamento e reuso da água. Panorama da Aquicultura, 16(95), 15–22. http://www.acquaimagem.com.br/aquagenetica/site/wpcontent/principios_sistema_recirculacao.pdf

Liang, J.-Y., & Chien, Y.-H. (2013). Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia-water spinach raft aquaponics system. International Biodeterioration & Biodegradation, 85, 693–700.

Oliveira, E. J., Pessoa, W. V. N., Melo, R. F., & Silva, M. G. (2021). Aquaponia: alternativas de uma ciência em ascensão. In IX Congresso Virtual de Agronomia.

Palm, H., et al. (2018). Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquaculture International, 26, 813–842. https://doi.org/10.1007/s10499-018-0249-z

Pires, M. F. C. (1998). Multidisciplinaridade, interdisciplinaridade e transdisciplinaridade no ensino. Interface - Comunicação, Saúde, Educação, 2, 173–182.

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: Aquaponics integrating fish and plant culture. SRAC Publication - Southern Regional Aquaculture Center (454).

Rufí-Salís, M., Petit-Boix, A., et al. (2020). Identifying eco-efficient year-round crop combinations for rooftop greenhouse agriculture. The International Journal of Life Cycle Assessment, 25(3), 564–576. https://doi.org/10.1007/s11367-019-01724-5

Sátiro, T. M., Neto, K. X. C. R., & Delprete, S. E. (2018). Aquaponia: sistema que integra produção de peixes com produção de vegetais de forma sustentável. Revista Brasileira de Engenharia de Pesca, 11(1), 38–54.

Seawright, D. E., Stickney, R. R., & Walker, R. B. (1998). Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture, 160(3–4). https://doi.org/10.1016/S0044-8486(97)00168-3

Siqueira, T. V. (2018). Aquicultura: A nova fronteira para produção de alimentos de forma sustentável.

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming. FAO.

Thiollent, M. (2009). Metodologia da pesquisa-ação (16th ed.). São Paulo: Cortez.

Van Woensel, L. (2015). Ten technologies which could change our lives: Potential impacts and policy implications.EPRS: European Parliamentary Research Service. https://policycommons.net/artifacts/1336663/

Vilaça, M. L. C., & Araújo, E. V. F. (2016). Tecnologia, sociedade e educação na era digital. Duque de Caxias: UNIGRANRIO.

Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges: A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290

Published

2025-09-16

How to Cite

Côrtes, N., Vila Nova Pessoa, W., César Vicente Silva Souza , C., & Maria Santos, V. (2025). Aquaponics and Extension: A Technological Intervention with Socio Environmental Impact. Diversitas Journal, 10(Especial_2). https://doi.org/10.48017/dj.v10iEspecial 2.3272